Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 58(7): 4275-4288, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888157

RESUMO

Electrical conduction and oxygen diffusion mobility in the bixbyite ( Ia3̅) and rhombohedral ( R3̅) polymorphs of the Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ, δ1, δ2; δ1 > δ2) heavy lanthanide molybdates, belonging to new, previously unexplored classes of potential mixed (ionic-electronic) conductors, have been studied in the range of 200-900 °C. The oxygen self-diffusion coefficient in bixbyite ( Ia3̅) Yb6MoO12-δ phase estimated by the temperature-programmed heteroexchange with C18O2 was shown to be much higher than that for rhombohedral ( R3̅) RI (with large oxygen deficiency) and ( R3̅) RII (with small oxygen deficiency) Ln6MoO12-Δ (Ln = Tm, Yb; Δ = δ1; δ1 > δ2) oxides. According to the activation energy for total conduction in ambient air, 0.99, 0.93, and 1.01 eV in Er6MoO12-δ, Tm6MoO12-δ, and Yb6MoO12-δ bixbyites, respectively, oxygen ion conductivity prevails in the range ∼200-500 °C. Oxygen mobility data for the rhombohedral Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ1, δ2) phases RI and RII indicate that the oxygen in these phases exhibits mobility at much higher temperatures, such as those above 600-700 °C. Accordingly, below 600-700 °C they have predominantly electronic conductivity. As shown by total conductivity study of Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites ( Ia3̅) and rhombohedral phases Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ1, δ2) ( R3̅) in dry and wet air, the proton conductivity contribution exists only in Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites up to 450-600 °C and decreases with a decreasing of the lanthanide ionic radius. The obtained data on the mobility of oxygen and the presence of proton contribution in bixbyites in the 300-600 °C temperature range make it possible to confirm unequivocally that Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites are mixed electron-proton conductors at these temperatures.

2.
Materials (Basel) ; 16(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241369

RESUMO

New bromide compounds A2BIBIIIBr6 with a double perovskite structure provide variety and flexibility of optoelectronic properties, and some of them are of poor toxicity in comparison with such popular lead halides. The promising compound with a double perovskite structure was proposed recently for the ternary system of CsBr-CuBr-InBr3. Analysis of phase equilibria in the CsBr-CuBr-InBr3 ternary system showed stability of the quasi-binary section of CsCu2Br3-Cs3In2Br9. Formation of the estimated phase Cs2CuInBr6 by melt crystallization or solid-state sintering was not observed, most likely, as a result of higher thermodynamic stability of binary bromides CsCu2Br3 and Cs3In2Br9. The existence of three quasi-binary sections was observed, while no ternary bromide compounds were found.

3.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676295

RESUMO

The double perovskite halides A2BIBIIIX6 provide flexibility for various formulation adjustments and are of less toxicity in comparison with well-discussed complex lead halide derivatives. Such type of structure can be formed by replacing two Pb2+ ions in the cubic lattice with a pair of non-toxic heterovalent (monovalent and trivalent) metal cations, such as silver and indium. The aim of this work is to briefly characterize the phase equilibria in the ternary system CsBr-AgBr-InBr3 and investigate the thermodynamic availability of synthesis of Cs2AgInBr6 double perovskite phase by solid-state sintering or melt crystallization. The results demonstrate the unfeasibility of the Cs2AgInBr6 phase but high stability of the corresponding binary bromides perspective for optoelectronics.

4.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987217

RESUMO

An elegant method of one-pot reaction at room temperature for the synthesis of nanocomposites consisting of cerium containing nanoparticles stabilized by carboxymethyl cellulose (CMC) macromolecules was introduced. The characterization of the nanocomposites was carried out with a combination of microscopy, XRD, and IR spectroscopy analysis. The type of crystal structure of inorganic nanoparticles corresponding to CeO2 was determined and the mechanism of nanoparticle formation was suggested. It was demonstrated that the size and shape of the nanoparticles in the resulting nanocomposites does not depend on the ratio of the initial reagents. Spherical particles with a mean diameter 2-3 nm of were obtained in different reaction mixtures with a mass fraction of cerium from 6.4 to 14.1%. The scheme of the dual stabilization of CeO2 nanoparticles with carboxylate and hydroxyl groups of CMC was proposed. These findings demonstrate that the suggested easily reproducible technique is promising for the large-scale development of nanoceria-containing materials.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770388

RESUMO

Metal gallium as a low-melting solid was applied in a mixture with elemental iodine to substitute tin(IV) in a promising light-harvesting phase of Cs2SnI6 by a reactive sintering method. The reducing power of gallium was applied to influence the optoelectronic properties of the Cs2SnI6 phase via partial reduction of tin(IV) and, very likely, substitute partially Sn4+ by Ga3+. The reduction of Sn4+ to Sn2+ in the Cs2SnI6 phase contributes to the switching from p-type conductivity to n-type, thereby improving the total concentration and mobility of negative-charge carriers. The phase composition of the samples obtained was studied by X-ray diffraction (XRD) and 119Sn Mössbauer spectroscopy (MS). It is shown that the excess of metal gallium in a reaction melt leads to the two-phase product containing Cs2SnI6 with Sn4+ and ß-CsSnI3 with Sn2+. UV-visible absorption spectroscopy shows a high absorption coefficient of the composite material.

6.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177252

RESUMO

A composite material based on electrospinning printed polyhydroxybutyrate fibers impregnated with brushite cement containing Zn substitution was developed for bone implant applications. Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were applied for materials characterization. Soaking the composite in Ringer's solution led to the transformation of brushite into apatite phase, accompanied by the morphology changes of the material. The bending strength of the composite material was measured to be 3.1 ± 0.5 MPa. NCTC mouse fibroblast cells were used to demonstrate by means of the MTT test that the developed material was not cytotoxic. The behavior of the human dental pulp stem cells on the surface of the composite material investigated by the direct contact method was similar to the control. It was found that the developed Zn containing composite material possessed antibacterial properties, as testified by microbiology investigations against bacteria strains of Escherichia coli and Staphylococcus aureus. Thus, the developed composite material is promising for the treatment of damaged tissues with bacterial infection complications.

7.
Front Chem ; 8: 564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850618

RESUMO

Structure and properties of an inorganic perovskite Cs2SnI6 demonstrated its potential as a light-harvester or electron-hole transport material; however, its optoelectronic properties are poorer than those of lead-based perovskites. Here, we report the way of light tuning of absorption and transport properties of cesium iodostannate(IV) Cs2SnI6 via partial heterovalent substitution of tin for indium. Light absorption and optical bandgaps of materials have been investigated by UV-vis absorption and photoluminescent spectroscopies. Low-temperature electron paramagnetic resonance spectroscopy was used to study the kind of paramagnetic centers in materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA