Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0368723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391225

RESUMO

Antibiotic-resistant Gram-negative bacteria remain a globally leading cause of bacterial infection-associated mortality, and it is imperative to identify novel therapeutic strategies. Recently, the advantage of using antibacterials selective against Gram-negative bacteria has been demonstrated with polymyxins that specifically target the lipopolysaccharides of Gram-negative bacteria. However, the severe cytotoxicity of polymyxins limits their clinical use. Here, we demonstrate that polymyxin B nonapeptide (PMBN), a polymyxin B derivative without the terminal amino acyl residue, can significantly enhance the effectiveness of commonly used antibiotics against only Gram-negative bacteria and their persister cells. We show that although PMBN itself does not exhibit antibacterial activity or cytotoxicity well above the 100-fold minimum inhibitory concentration of polymyxin B, PMBN can increase the potency of co-treated antibiotics. We also demonstrate that using PMBN in combination with other antibiotics significantly reduces the frequency of resistant mutant formation. Together, this work provides evidence of the utilities of PMBN as a novel potentiator for antibiotics against Gram-negative bacteria and insights for the eradication of bacterial persister cells during antibiotic treatment. IMPORTANCE: The significance of our study lies in addressing the problem of antibiotic-resistant Gram-negative bacteria, which continue to be a global cause of mortality associated with bacterial infections. Therefore, identifying innovative therapeutic approaches is an urgent need. Recent research has highlighted the potential of selective antibacterials like polymyxins, which specifically target the lipopolysaccharides of Gram-negative bacteria. However, the clinical use of polymyxins is limited by their severe cytotoxicity. This study unveils the effectiveness of polymyxin B nonapeptide (PMBN) in significantly enhancing the eradication of persister cells in Gram-negative bacteria. Although PMBN itself does not exhibit antibacterial activity or cytotoxicity, it remarkably reduces persister cells during the treatment of antibiotics. Moreover, combining PMBN with other antibiotics reduces the emergence of resistant mutants. Our research emphasizes the utility of PMBN as a novel potentiator to decrease persister cells during antibiotic treatments for Gram-negative bacteria.


Assuntos
Infecções Bacterianas , Infecções por Bactérias Gram-Negativas , Polimixina B/análogos & derivados , Humanos , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polimixinas/química , Polimixinas/farmacologia , Bactérias Gram-Negativas , Lipopolissacarídeos , Testes de Sensibilidade Microbiana
2.
Diagn Microbiol Infect Dis ; 108(4): 116187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340485

RESUMO

We investigated colistin heteroresistance in Citrobacter freundii isolates from Korean hospitals. Using population analysis profiling (PAP), we detected colistin heteroresistance in 31.3% of isolates. Among these, ST217 was the most prevalent clone (58.5%), particularly within colistin-heteroresistant isolates (80.0%). Interestingly, the second most common clone, ST248, was not found in heteroresistant isolates. We identified amino acid changes in PhoQ, PmrA, and PmrB, along with mRNA overexpression in pmrB and arnD. Colistin monotherapy showed no efficacy, but a combination of colistin and ciprofloxacin successfully eradicated all five isolates, even at 0.5 × minimum inhibitory concentrations. This study underscores the high prevalence of colistin heteroresistance in C. freundii isolates, limiting the effectiveness of colistin monotherapy. Combining colistin with ciprofloxacin may offer a viable treatment option for C. freundii infections.


Assuntos
Antibacterianos , Colistina , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Ciprofloxacina , República da Coreia/epidemiologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
J Glob Antimicrob Resist ; 38: 223-226, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723713

RESUMO

OBJECTIVES: The aim of this study was to characterize an NDM-1-producing Acinetobacter seifertii isolates from a patient in South Korea. METHODS: Antibiotic susceptibility testing and genotyping using multigene sequencing were performed and whole plasmid sequences were determined. RESULTS: The genotype of A. seifertii was ST1899 and was resistant to ceftazidime, trimethoprim-sulfamethoxazole, and piperacillin-tazobactam, in addition to carbapenem. blaNDM-1 was surrounded by the ISAba125 insertion sequence within the structure of Tn125 in the 47 kb-sized plasmid. The plasmid exhibited a structure similar to that of other plasmids of diverse Acinetobacter sp. found worldwide. Transconjugation and the growth curve indicated that the plasmid was adapted to A. seifertii rather than other closely related Acinetobacter sp. CONCLUSIONS: Acquisition of carbapenem resistance by horizontal transfer of the blaNDM-1-carrying plasmid from another Acinetobacter species was found with no growth defect.

4.
J Glob Antimicrob Resist ; 36: 217-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157935

RESUMO

In this study, we describe an Enterobacter ludwigii clinical isolate that is resistant to both carbapenems and colistin in South Korea. Antimicrobial susceptibility testing revealed that E. ludwigii CRE2104-31 was non-susceptible to all tested antibiotics except fosfomycin. Whole genome sequencing identified a 323-kbp IncHI2 plasmid, pCRE2104-31a, that was co-harbouring mobile colistin resistance (mcr)-9.1 and blaIMP-1. In comparison with other full plasmids, pCRE2104-31a exhibited the closest similarity to a plasmid from the Klebsiella pneumoniae strain CNR48 from France, with 19.9% query coverage and 99% identity. Notably, we observed five tandem repeats of blaIMP-1 and aac(6')-Il genes, accompanied by multiple attCs within a class I integron on the Tn402-like transposon. The unit of blaIMP-1-attC-aac(6')-Il-attC might have accumulated due to multiple convergent events. In addition to mcr-9.1 and blaIMP-1, various other antibiotic resistance-associated genes were identified in the plasmid, as follows: blaTEM-1B, aph(3')-I, aph(3')-Ia, aac(6')-Il, aac(6')-IIc, aac(6')-IIa, aph(6)-Id, aph(3'')-Ib, aadA2b, aac(6')-Ib3, sul, dfrA19, qnrB2, aac(6')-Ib-cr, ere(A), and qacE. A conjugation assay showed that the mcr-9.1/blaIMP-1-co-bearing plasmid was self-transmissible to E. coli J53. However, colistin and carbapenem resistance could not be transferred to E. coli due to high incompatibility. The convergence of mcr and carbapenemase genes is thought to be host-dependent among Enterobacteriaceae. The emergence of extensively drug-resistant E. ludwigii co-harbouring MCR-9.1 and a multicopy of blaIMP-1 would pose a significant threat within the compatible Enterobacteriaceae.


Assuntos
Colistina , Enterobacter , Escherichia coli , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Enterobacteriaceae
5.
Int J Antimicrob Agents ; 64(2): 107216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795926

RESUMO

The emergence of multidrug-resistant pathogens has outpaced the development of new antibiotics, leading to renewed interest in endolysins. Endolysins have been investigated as novel biocontrol agents for Gram-positive bacteria. However, their efficacy against Gram-negative species is limited by the barrier presented by their outer membrane, which prevents endolysin access to the peptidoglycan substrate. Here, we used the translocation domain of botulinum neurotoxin to deliver endolysin across the outer membrane of Gram-negative bacteria. The translocation domain selectively interacts with and penetrates membranes composed of anionic lipids, which have been used in nature to deliver various proteins into animal cells. In addition to the botulinum neurotoxin translocation domain, we have fused bacteriophage-derived receptor binding protein to endolysins. This allows the attached protein to efficiently bind to a broad spectrum of Gram-negative bacteria. By attaching these target-binding and translocation machineries to endolysins, we aimed to develop an engineered endolysin with broad-spectrum targeting and enhanced antibacterial activity against Gram-negative species. To validate our strategy, we designed engineered endolysins using two well-known endolysins, T5 and LysPA26, and tested them against 23 strains from six species of Gram-negative bacteria, confirming that our machinery can act broadly. In particular, we observed a 2.32 log reduction in 30 min with only 0.5 µM against an Acinetobacter baumannii isolate. We also used the SpyTag/SpyCatcher system to easily attach target-binding proteins, thereby improving its target-binding ability. Overall, our newly developed endolysin engineering strategy may be a promising approach to control multidrug-resistant Gram-negative bacterial strains.


Assuntos
Antibacterianos , Membrana Externa Bacteriana , Endopeptidases , Bactérias Gram-Negativas , Endopeptidases/farmacologia , Endopeptidases/metabolismo , Endopeptidases/química , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Testes de Sensibilidade Microbiana , Transporte Proteico , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Acinetobacter baumannii/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA