Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transgenic Res ; 32(5): 411-421, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615877

RESUMO

n-3 polyunsaturated fatty acids (n-3 PUFAs), including α-linolenic acid and eicosapentaenoic acid (EPA), are essential nutrients for vertebrates including humans. Vertebrates are n-3 PUFA-auxotrophic; hence, dietary intake of n-3 PUFAs is required for their normal physiology and development. Although fish meal and oil have been utilized as primary sources of n-3 PUFAs by humans and aquaculture, these traditional n-3 PUFA sources are expected to be exhausted because of the increasing consumption requirements of humans. Hence, it is necessary to establish alternative n-3 PUFA sources to reduce the gap between the supply and demand of n-3 PUFAs. Here, we investigated whether insects, which are considered as a novel source of essential nutrients, could store n-3 PUFAs by the forced expression of n-3 PUFA biosynthetic enzymes. We utilized Drosophila as an insect model to generate transgenic strains expressing Caenorhabditis elegans PUFA biosynthetic enzymes and examined their effects on the proportion of fatty acids. The ubiquitous expression of methyl-end desaturase FAT-1 prominently enhanced the proportions of α-linolenic acid, indicating that FAT-1 is useful for metabolic engineering to fortify α-linolenic acid in insect. Furthermore, the ubiquitous expression of nematode front-end desaturases (FAT-3 and FAT-4), PUFA elongase (ELO-1), and FAT-1 led to EPA bioproduction. Hence, nematode PUFA biosynthetic genes may serve as powerful genetic tools for enhancing the proportion of EPA in insects. This study represents the first step toward the establishment of n-3 PUFA-producing insects.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Humanos , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elongases de Ácidos Graxos/genética , Ácido alfa-Linolênico , Ácidos Graxos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
2.
Mol Pain ; 18: 17448069221108965, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35815426

RESUMO

Itch and pain are both unpleasant, but they are discrete sensations. Both of these sensations are transmitted by C-fibers and processed in laminae I-II of the dorsal horn. To examine whether pruriception modulates pain, we first confirmed the activation of cells in the itch-related circuits that were positive for gastrin-releasing peptide (GRP) and GRP receptor (GRPR) using a paw formalin injection model. This pain model with typical biphasic pain behavior increased c-Fos but did not affect the expressions of GRP and GRPR mRNAs in the dorsal horn. Using c-Fos expression as a marker for activated cells, we confirmed that formalin injection increased the number of cells double-labeled for c-Fos and GRP or GRPR in the dorsal horn. The emergence of these neurons indicates the activation of itch-related circuits by acute pain signals. The effect of an antagonist for a GRPR was examined in the paw formalin injection model. Intrathecal chronic antagonization of spinal GRPR enhanced the onset of phase II of paw formalin injection-induced pain behavior. Exogenous intrathecal GRP infusion to the paw-formalin injection model not only showed significant reduction of pain behavior but also increased c-Fos in the inhibitory neurons in the dorsal horn. The anti-nociceptive effect of spinal GRP infusion was observed in the peripheral inflammation model (complete Freund's adjuvant injection model). In this study we suggest that painful stimuli activated itch-related neuronal circuits and uncovered the spinal activation of the itch-induced analgesic effect on acute and established inflammatory pain.


Assuntos
Prurido , Receptores da Bombesina , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Formaldeído/farmacologia , Peptídeo Liberador de Gastrina/metabolismo , Humanos , Fibras Nervosas Amielínicas/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Células do Corno Posterior/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo , Receptores da Bombesina/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
3.
PLoS Genet ; 15(4): e1008121, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31034473

RESUMO

Endocycle is a commonly observed cell cycle variant through which cells undergo repeated rounds of genome DNA replication without mitosis. Endocycling cells arise from mitotic cells through a switch of the cell cycle mode, called the mitotic-to-endocycle switch (MES), to initiate cell growth and terminal differentiation. However, the underlying regulatory mechanisms of MES remain unclear. Here we used the Drosophila steroidogenic organ, called the prothoracic gland (PG), to study regulatory mechanisms of MES, which is critical for the PG to upregulate biosynthesis of the steroid hormone ecdysone. We demonstrate that PG cells undergo MES through downregulation of mitotic cyclins, which is mediated by Fizzy-related (Fzr). Moreover, we performed a RNAi screen to further elucidate the regulatory mechanisms of MES, and identified the evolutionarily conserved chaperonin TCP-1 ring complex (TRiC) as a novel regulator of MES. Knockdown of TRiC subunits in the PG caused a prolonged mitotic period, probably due to impaired nuclear translocation of Fzr, which also caused loss of ecdysteroidogenic activity. These results indicate that TRiC supports proper MES and endocycle progression by regulating Fzr folding. We propose that TRiC-mediated protein quality control is a conserved mechanism supporting MES and endocycling, as well as subsequent terminal differentiation.


Assuntos
Ciclo Celular , Chaperoninas/metabolismo , Drosophila/fisiologia , Mitose , Animais , Ciclo Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/biossíntese , Larva , Mitose/genética , Modelos Biológicos , Transporte Proteico , Interferência de RNA
4.
J Clin Biochem Nutr ; 70(1): 28-32, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35068678

RESUMO

Attention has recently been paid to the duodenum as the pathophysiologic center of functional dyspepsia. However, the precise mechanisms of symptom generation remain unknown. We here investigated the effect of acid on duodenal prostaglandin E2 and localization of prostaglandin E2 related receptors. Sprague-Dawley rats were used for this study. Hydrochloric acid was administered in the duodenum, then prostaglandin E2 levels in the duodenum were measured using the ELISA. The expression and localization of prostaglandin receptors (EP1-4) and the mRNAs of prostaglandin synthases were investigated using in situ hybridization histochemistry in duodenal tissue. After acid perfusion, prostaglandin E2 levels in the duodenum significantly increased. EP3 was expressed mainly at the myenteric plexus in the duodenal mucosa, and EP4 at both the epithelial surface and myenteric plexus. Contrary, EP2 was sparsely distributed in the villi and EP1 were not clearly seen on in situ hybridization histochemistry. Prostaglandin-synthetic enzymes were also distributed in the duodenal mucosa. The prostaglandin E2 levels in the duodenum increased after acidification. Prostaglandin E2 receptors and prostaglandin E2-producing enzymes were both observed in rat duodenum. These observations suggest that duodenal prostaglandin E2 possibly play a role in the symptom generation of functional dyspepsia.

5.
J Physiol ; 599(6): 1783-1798, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476055

RESUMO

KEY POINTS: Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are essential for neuronal development and survival in embryo. However, after birth they play pivotal roles in the generation of hyperalgesia in many painful conditions. Both factors are believed to act on different groups of primary afferents, but interaction between them has not yet been studied. Here we show a synergism between the two factors. Intramuscular injection of a mixture of both factors at a low concentration, each of which alone had no effect, induced a significant muscular mechanical hyperalgesia in rats. We show that synergism occurs in the primary afferent neurons and find that about 25% primary afferents innervating the muscle express both TrkA (NGF receptor) and GFRα1 (GDNF receptor). We show by pharmacological means that afferent neurons with TrkA and GFRα1 express both TRPV1 and ASICs. Our data establish a basis for synergism between NGF and GDNF. In some inflammatory conditions both nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are upregulated and play pivotal roles in inducing hyperalgesia. However, their interaction has not been studied. We examined whether and where interaction between both neurotrophic factors occurs in SD rats. Intramuscular injection to gastrocnemius muscle (GC) of a mixture of NGF (0.1 µm) and GDNF (0.008 µm), which alone had no effect, induced a significant mechanical hyperalgesia (F(6,30)  = 13.62, P = 0.0001), demonstrating synergism between the two factors. Phosphorylated extracellular signal-regulated kinase (pERK) immunoreactivity in dorsal root ganglia (DRGs) induced by compression of GC increased after injection of the mixture (P = 0.028, compared with PBS); thus the interaction of NGF and GDNF could occur at the primary afferent level. An in situ hybridization study (n = 4) demonstrated that 23.7-29.2% of GC-innervating DRG neurons coexpressed TrkA (NGF receptor) and GFRα1 (GDNF receptor). The cell size of the coexpressing GC DRG neurons showed no skewing towards the small size range but was distributed widely from the small to the large size ranges. Therefore, some of the coexpressing neurons with thin axons are thought to contribute to this mechanical hyperalgesia. The hyperalgesia was reversed by both amiloride (F(1,13)  = 5.056, P = 0.0425, compared with PBS) and capsazepine (F(1,10)  = 8.402, P = 0.0159, compared with DMSO), suggesting that the primary afferents sensitized by the mixture express both TRPV1 and ASICs. These results showed a basis of synergism between NGF and GDNF.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator de Crescimento Neural , Animais , Gânglios Espinais , Hiperalgesia , Neurônios Aferentes , Ratos , Ratos Sprague-Dawley
6.
Biosci Biotechnol Biochem ; 84(10): 2139-2148, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32633700

RESUMO

Most fatty acids in phospholipids and other lipid species carry an even number of carbon atoms. Also odd-chain fatty acids (OCFAs), such as C15:0 and C17:0, are widespread throughout the living organism. However, the qualitative and quantitative profiles of OCFAs-containing lipids in living organisms remain unclear. Here, we show that OCFAs are present in Drosophila phosphatidylcholine (PC) and phosphatidylethanolamine (PE) and that their level increases in accordance with progression of growth. Furthermore, we found that food-derived propionic acid/propanoic acid (C3:0) is utilized for production of OCFA-containing PC and PE. This study provides the basis for understanding in vivo function of OCFA-containing phospholipids in development and lipid homeostasis.


Assuntos
Drosophila/química , Ácidos Graxos/química , Fosfolipídeos/química , Animais , Drosophila/metabolismo , Ácidos Graxos/biossíntese , Propionatos/metabolismo
7.
Glia ; 66(8): 1775-1787, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693281

RESUMO

Glial cells play important roles in the development and maintenance of neuropathic pain. In particular, activated microglia in the spinal cord facilitate the hyper-excitability of dorsal horn neurons after peripheral nerve injury via pro-inflammatory molecules. In this study, we investigated the possible involvement of the anti-inflammatory cytokine, interleukin-4 (IL-4), in neuropathic pain. We did not detect the expression of IL-4 mRNA in the rat dorsal root ganglion or spinal cord; however, peripheral nerve injury induced the expression of IL-4 receptor (IL-4R) alpha mRNA in the spinal cord. A histological analysis revealed that nerve injury induced IL-4R alpha mRNA in activated spinal microglia ipsilateral to the injury site. Additionally, the increases in IL-4R alpha were coincident with the increased expression of phosphorylated signal transducer and activator of transcription 6 (pSTAT6) in spinal microglia. Intrathecal administration of recombinant IL-4 suppressed mechanical hypersensitivity in neuropathic rats, and the analgesic effect of IL-4 was accompanied by further enhancement of pSTAT6 expression in spinal microglia. Taken together, these results suggest that the adaptive responses of microglia to nerve injury involve both inflammatory and anti-inflammatory signaling, including IL-4R alpha and pSTAT6. These findings support that utilizing the endogenous anti-nociceptive activity of IL-4R alpha may modify the cell lineage of pro-nociceptive microglia, thus providing a novel therapeutic strategy for neuropathic pain.


Assuntos
Subunidade alfa de Receptor de Interleucina-4/metabolismo , Interleucina-4/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Neuroglia/metabolismo , Animais , Gânglios Espinais/metabolismo , Neuralgia/patologia , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Medula Espinal/patologia
8.
Proc Natl Acad Sci U S A ; 112(5): 1452-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605909

RESUMO

In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, ß3-octopamine receptor (Octß3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octß3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.


Assuntos
Drosophila/crescimento & desenvolvimento , Ecdisona/biossíntese , Metamorfose Biológica , Receptores de Amina Biogênica/fisiologia , Tórax/fisiologia , Animais , Hormônios de Inseto/metabolismo , Larva/crescimento & desenvolvimento , Receptores de Amina Biogênica/metabolismo , Transdução de Sinais , Tiramina/biossíntese
10.
Glia ; 63(2): 216-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25130721

RESUMO

Recent studies have indicated an important role of ATP receptors in spinal microglia, such as P2Y12 or P2Y13, in the development of chronic pain. However, intracellular signaling cascade of these receptors have not been clearly elucidated. We found that intrathecal injection of 2-(methylthio)adenosine 5'-diphosphate (2Me-SADP) induced mechanical hypersensitivity and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the spinal cord. Intrathecal administration of P2Y12/P2Y13 antagonists and Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor H1152 suppressed not only p38 MAPK phosphorylation, but also mechanical hypersensitivity induced by 2Me-SADP. In the rat peripheral nerve injury model, intrathecal administration of antagonists for the P2Y12/P2Y13 receptor suppressed activation of p38 MAPK in the spinal cord. In addition, subarachnoidal injection of H1152 also attenuated nerve injury-induced spinal p38 MAPK phosphorylation and neuropathic pain behavior, suggesting an essential role of ROCK in nerve injury-induced p38 MAPK activation. We also found that the antagonists of the P2Y12/P2Y13 receptor and H1152 had inhibitory effects on the morphological changes of microglia such as retraction of processes in both 2Me-SADP and nerve injured rats. In contrast these treatments had no effect on the number of Iba1-positive cells in the nerve injury model. Collectively, our results have demonstrated roles of ROCK in the spinal microglia that is involved in p38 MAPK activation and the morphological changes. Inhibition of ROCK signaling may offer a novel target for the development of a neuropathic pain treatment.


Assuntos
Microglia/metabolismo , Neuralgia/patologia , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/toxicidade , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Hiperalgesia/etiologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Fosforilação/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/induzido quimicamente , Traumatismos da Medula Espinal/complicações , Tionucleotídeos/toxicidade
11.
Mol Pain ; 11: 53, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26353783

RESUMO

BACKGROUND: LTB4 is classified as a leukotriene (LT), a group of lipid mediators that are derived from arachidonic acid. It is recognized that leukotrienes are involved in the pathogenesis of many diseases, including peripheral inflammatory pain. However, little is known about the effects of leukotrienes on the spinal dorsal horn during neuropathic pain. Previously, we reported that there was increased expression of 5-lipoxygenase (5-LO) at spinal microglia, and the leukotriene B4 receptor 1 (BLT1), a high affinity receptor of LTB4, in spinal neurons in spared nerve injury (SNI) model rats. In the present study, we examined the effects of LTB4 on spinal dorsal horn neurons in both naïve and SNI model rats using patch-clamp methods. RESULTS: Bath application of LTB4 did not change AMPA receptor-mediated spontaneous excitatory postsynaptic currents (sEPSCs) or membrane potentials. However, we found that LTB4 enhanced the amplitude of NMDA receptor-mediated sEPSCs and significantly increased exogenous NMDA-induced inward currents in SNI model rats. This increase of inward currents could be inhibited by a selective LTB4 antagonist, U75302, as well as a GDP-ß-S, a G-protein inhibitor. These results indicate that both increased LTB4 from spinal microglia or increased BLT1 in spinal neurons after peripheral nerve injury can enhance the activity of NMDA receptors through intracellular G-proteins in spinal dorsal horn neurons. CONCLUSION: Our findings showed that LTB4, which may originate from microglia, can activate BLT1 receptors which are expressed on the membrane of spinal dorsal horn neurons during neuropathic pain. This glia-neuron interaction induces the enhancement of NMDA currents through intracellular G-proteins. The enhancement of NMDA receptor sensitivity of dorsal horn neurons may lead to central sensitization, leading to mechanical pain hypersensitivity.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Leucotrieno B4/farmacologia , N-Metilaspartato/farmacologia , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/metabolismo , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Masculino , Traumatismos dos Nervos Periféricos/fisiopatologia , Células do Corno Posterior/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
12.
Mol Pain ; 11: 8, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25889103

RESUMO

BACKGROUND: Artemin, a member of the glial cell line-derived neurotrophic factor family, is known to have a variety of neuronal functions, and has been the subject of attention because it has interesting effects, including bi-directional results in modulation in neuropathic and inflammatory pain. It has been shown that the overexpression of artemin is associated with an increase in the expression of TRP family channels in primary afferents and subsequent hyperalgesia, and an increase in neuronal activity. The purpose of this study was to examine the peripheral synthesis of artemin in inflammatory and neuropathic pain models, and to demonstrate the effects of long-term or repeated application of artemin in vivo on pain behaviors and on the expression of TRP family channels. Further, the regulatory mechanisms of artemin on TRPV1/A1 were examined using cultured DRG neurons. RESULTS: We have demonstrated that artemin is locally elevated in skin over long periods of time, that artemin signals significantly increase in deep layers of the epidermis, and also that it is distributed over a broad area of the dermis. In contrast, NGF showed transient increases after peripheral inflammation. It was confirmed that the co-localization of TRPV1/A1 and GFRα3 was higher than that between TRPV1/A1 and TrkA. In the peripheral sciatic nerve trunk, the synthesis of artemin was found by RT-PCR and in situ hybridization to increase at a site distal to a nerve injury. We demonstrated that in vivo repeated artemin injections into the periphery changed the gene expression of TRPV1/A1 in DRG neurons without affecting GFRα3 expression. Repeated artemin injections also induced mechanical and heat hyperalgesia. Using primary cultured DRG neurons, we found that artemin application significantly increased TRPV1/A1 expression and Ca(2+) influx. Artemin-induced p38 MAPK pathway regulated the TRPV1 channel expression, however TRPA1 upregulation by artemin is not mediated through p38 MAPK. CONCLUSIONS: These data indicate the important roles of peripherally-derived artemin on the regulation of TRPV1/A1 in DRG neurons in pathological conditions such as inflammatory and neuropathic pain.


Assuntos
Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Dor/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Gânglios Espinais/metabolismo , Hiperalgesia/patologia , Nociceptores/metabolismo , Ratos Sprague-Dawley , Pele/metabolismo , Canal de Cátion TRPA1
13.
BMC Med Genet ; 16: 75, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329304

RESUMO

BACKGROUND: Recent genome-wide association studies (GWAS) have identified many SNPs associated with type 2 diabetes mellitus (T2DM). However, the functional roles for most of the SNPs have not been elucidated. MicroRNAs (miRNAs) are key regulators of gene expression involved in the development and progression of various diseases including T2DM. In this study, we investigated whether commonly occurring SNPs modulate miRNA-directed regulation of gene expression, and whether such SNPs in miRNA-binding sites are associated with the susceptibility for T2DM. METHODS: Genotypes of eleven 3' untranslated region (UTR) SNPs of seven susceptibility genes for T2DM were determined in 353 T2DM patients and 448 control subjects. In addition, the interactions of miRNAs with the 3'UTR in the hepatocyte nuclear factor 1ß (HNF1B) gene were investigated using luciferase reporter assays. RESULTS: One 3'UTR SNP (rs2229295) in the HNF1B gene was significantly associated with T2DM, and the frequency of an A allele (rs2229295) in T2DM patients was decreased compared with that in controls. Luciferase reporter assays showed that the SNP (rs2229295) altered the binding of two miRNAs (hsa-miR-214-5p and hsa-miR-550a-5p). CONCLUSIONS: We have detected the interactions of hsa-miR-214-5p/hsa-miR-550a-5p and the 3'UTR SNP of the HNF1B gene by in vitro luciferase reporter assays, and propose that the binding of such miRNAs regulates the expression of the HNF1B gene and the susceptibility of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Fator 1-beta Nuclear de Hepatócito/genética , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Humanos , Japão , Luciferases , Masculino , Polimorfismo de Nucleotídeo Único/genética
15.
Neurosci Lett ; 823: 137663, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38286397

RESUMO

BACKGROUND CONTEXT: Elucidating the mechanism of neuropathic pain (NeP) is crucial as it can result in motor dysfunction and negatively impact quality of life in patients with spinal cord injury (SCI). Although it has been reported that cyclooxygenase 2 (COX2) is involved in NeP in rat models of peripheral nerve injury and that COX2 inhibitors can alleviate NeP, these mechanisms after SCI have not been fully investigated. PURPOSE: The purpose is to investigate whether the thoracic SCI affects the expression of mRNAs for COX1 and COX2 in the lumbar spinal cord, and the effect of COX2 inhibitor on its behavior. STUDY DESIGN: Male Sprague-Dawley (SD) rats underwent thoracic (T10) spinal cord contusion injury using an Infinite Horizon (IH) impactor device. SCI rats received COX2 inhibitors (50 µg/day) on days 5 and 6 after SCI. METHODS: Male SD rats underwent T10 laminectomy under mixed anesthesia, and IH impactors were applied to the same site to create a rat SCI model. Rats that underwent only laminectomy were designated as sham. Lumbar spinal cord at the L4-5 level was harvested at 3, 5, 7, 14, and 28 days after SCI, and COX2 and COX1 were quantified by reverse-transcription PCR (RT-PCR). COX2 expression, expression site, and expression time were determined by immunohistochemistry (IHC) and in situ hybridization histochemistry (ISHH) at the same time points. The expression site and time of COX2 expression were also examined at the same time point by ISHH. On 5th and 6th day after SCI, saline and COX2 inhibitor (50 µg/day) were administered into the subarachnoid space as a single dose, and the two groups were compared in terms of mechanical withdrawal latency using the dynamic plantar esthesiometer, which is an automated von Frey-type system. RESULTS: COX2 was significantly increased at 5 and 7 days after SCI, but no significant difference in COX1 was observed after SCI by RT-PCR. ISHH targeting COX2 showed clear expression of COX2 in spinal cord vascular endothelial cells at 5 and 7 days after SCI. COX2 expression was almost abolished at day 14 and 28. Behavioral experiments showed that pain was significantly improved from day 2 after COX2 inhibitor administration compared to the saline group, with improvement up to day 14 after SCI, but no significant difference was observed after day 21. CONCLUSIONS: The present findings suggest that thoracic SCI increased COX2 in vascular endothelial cells in the lumbar spinal cord and that the administration of COX2 inhibitor significantly alleviated mechanical hypersensitivity of the hind-paw following the thoracic SCI. Therefore, endothelial cell derived COX2 in the lumbar spinal cord may be involved in the induction of neuropathic pain in the SCI model rats. CLINICAL SIGNIFICANCE: The findings in the present study regarding the induction of endothelial COX2 and the effect of its inhibitor on the mechanical hypersensitivity suggest that endothelial cell-derived COX2 is one of the focuses for the treatment for neuropathic pain in the acute phase of SCI.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Animais , Humanos , Masculino , Ratos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Células Endoteliais/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Qualidade de Vida , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
16.
Glia ; 61(6): 943-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23505121

RESUMO

Cyclooxygenase (COX) enzyme synthesizes prostaglandins (PGs) from arachidonic acid and exists as two major isozymes, COX-1 and COX-2. The crucial role of prostaglandins in the pathogenesis of inflammatory pain in peripheral tissue and the spinal cord has been established; however its expression dynamics after peripheral nerve injury and its role in neuropathic pain are not clear. In this study, we examined the detailed expression patterns of genes for COX, PGD2 and thromboxane A2 synthases and their receptors in the spinal cord. Furthermore, we explored the altered gene expression of these molecules using the spared nerve injury (SNI) model. We also examined whether these molecules have a role in the development or maintenance of neuropathic pain. We found a number of interesting results in this study, the first was that COX-1 was constitutively expressed in the spinal cord and up-regulated in microglia located in laminae I-II after nerve injury. Second, COX-2 mRNA expression was induced in blood vessels after nerve injury. Third, TXA2 synthase and hematopoietic PGD synthase mRNAs were dramatically increased in the microglia after nerve injury. Finally, we found that intrathecal injection of a COX-1 inhibitor and DP2 receptor antagonist significantly attenuated the mechanical allodynia. Our findings indicate that PGD2 produced by microglia is COX-1 dependent, and that neurons in the spinal cord can receive PGD2 from microglia following peripheral nerve injury. We believe that PGD2 signaling via DP2 signaling pathway from microglia to neurons is one of the triggering factors for mechanical allodynia in this neuropathic pain model.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Prostaglandina D2/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Comportamento Animal , Ciclo-Oxigenase 1/genética , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Neuralgia/genética , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Medula Espinal/metabolismo
17.
Glia ; 61(3): 338-48, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23065679

RESUMO

Peripheral nerve injury activates spinal glial cells, which may contribute to the development of pain behavioral hypersensitivity. There is growing evidence that activated microglia show dynamic changes in cell morphology; however, the molecular mechanisms that underlie the modification of the membrane and cytoskeleton of microglia are not known. Here, we investigated the phosphorylation of ezrin, radixin, and moesin (ERM) proteins in the spinal cord after peripheral nerve injury. ERM is known to function as membrane-cytoskeletal linkers and be localized at filopodia- and microvilli-like structures. ERM proteins must be phosphorylated at a specific C-terminal threonine residue to be in the active state. The nature of ERM proteins in the spinal cord of animals in a neuropathic pain model has not been investigated and characterized. In the present study, we observed an increase in the phosphorylated ERM in the spinal microglia following spared nerve injury. The intrathecal administration of lysophosphatidic acid induced the phosphorylation of ERM proteins in microglia along with the development of mechanical pain hypersensitivity. Intrathecal administration of ERM antisense locked nucleic acid suppressed nerve injury-induced tactile allodynia and decreased the phosphorylation of ERM, but not the Iba1 staining pattern, in spinal glial cells. These findings suggest that lysophosphatidic acid induced the phosphorylation of ERM proteins in spinal microglia and may be involved in the emergence of neuropathic pain. These findings may underlie the pathological mechanisms of nerve injury-induced neuropathic pain.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Microglia/efeitos dos fármacos , Neuralgia/etiologia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/complicações , Fosforilação/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
18.
Biochem Biophys Res Commun ; 434(2): 258-62, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23541587

RESUMO

Here we report an additional Drosophila transheterozygote InR(GS15311)/InR(GS50346) carrying two different P-element-inducible alleles of insulin-like receptor gene (InR). InR(GS15311)/InR(GS50346) flies exhibit the following phenotypes previously reported in InR and insulin/IGF-1 signaling (IIS) pathway-related gene mutants: small bodies, developmental delay, shortened lifespan, and increased fasting resistance. All of these characteristics are shared among flies carrying mutated genes implicated in the pathway. This heteroallelic combination exhibited fertility but resulted in male semilethality, while females were viable and grew into adults. Furthermore, an experimental model employing the InR(GS15311)/InR(GS50346) strain confirmed negligible involvement of royal jelly in IIS. Thus, the heteroallelic InR mutant, discovered in this study, will serve as a good model for multiple purposes: investigating the IIS mechanisms; identifying and validating the ingredients that prevent type II diabetes; and screening of food constituents associated with IIS.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ácidos Graxos/metabolismo , Genes de Insetos , Receptores Proteína Tirosina Quinases/metabolismo , Alelos , Animais , Western Blotting , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Fertilidade , Alimentos , Análise de Alimentos/métodos , Privação de Alimentos/fisiologia , Heterozigoto , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade , Masculino , Modelos Animais , Mutação , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Análise de Sobrevida , Fatores de Tempo
19.
Biosci Biotechnol Biochem ; 77(4): 836-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563531

RESUMO

Here we present free amino acid profiles for Drosophila melanogaster adults. Imidazol dipeptides anserine and carnosine, which are abundant in mammalian muscle tissue, are not present in Drosophila. Dipeptide-enriched food altered the amino acid balance, suggesting that the free amino acid content is nutrition-dependent and probably mediated by dipeptides.


Assuntos
Ração Animal/análise , Dipeptídeos/metabolismo , Drosophila melanogaster/metabolismo , Laboratórios , Aminoácidos/metabolismo , Animais , Feminino , Masculino
20.
Lipids Health Dis ; 12: 4, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23305113

RESUMO

BACKGROUND: Dyslipidemia due to high total cholesterol, LDL-cholesterol, triglycerides, or low HDL-cholesterol is an important risk factor for coronary heart disease (CHD). Both SIRT1 and PUFAs can influence the expression of genes for nuclear receptors and transcription factors related to lipid metabolism such as LXRα, LXRß, PPARα, SREBP-1c. METHODS: A total of 707 Japanese males and 723 females were randomly selected from the participants who visited a medical center for routine medical check-ups. We analyzed the combined effects of the genotype/haplotype of the SIRT1 gene and dietary n-6/n-3 PUFA intake ratio on the determination of serum lipid levels. RESULTS: We found that the SIRT1 gene marked with haplotype 2 was associated with decreased serum LDL-cholesterol and increased HDL-cholesterol levels. In addition, the associations between the SIRT1 haplotype 2 and decreased LDL-C and increased HDL-C levels were only observed in the low n-6/n-3 PUFA intake ratio group, but not in the high n-6/n-3 PUFA intake ratio group. CONCLUSIONS: Our findings indicate that the combination of genetic variation in the SIRT1 gene and dietary n-6 and/or n-3 PUFA intake influence the determination of inter-individual variations of serum levels of LDL-C and HDL-C.


Assuntos
HDL-Colesterol/sangue , LDL-Colesterol/sangue , Gorduras na Dieta/sangue , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Variação Genética , Sirtuína 1/metabolismo , Idoso , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Feminino , Expressão Gênica/efeitos dos fármacos , Haplótipos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Sirtuína 1/genética , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA