Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant J ; 98(2): 291-300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570803

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases, called respiratory burst oxidase homologs (Rbohs), play crucial roles in development as well as biotic and abiotic stress responses in plants. Arabidopsis has 10 Rboh genes, AtRbohA to AtRbohJ. Five AtRbohs (AtRbohC, -D, -F, -H and -J) are synergistically activated by Ca2+ -binding and protein phosphorylation to produce ROS that play various roles in planta, although the activities of the other Rbohs remain unknown. With a heterologous expression system, we found a range of ROS-producing activity among the AtRbohs with differences up to 100 times, indicating that the required amounts of ROS are different in each situation where AtRbohs act. To specify the functions of AtRbohs involved in cell growth, we focused on AtRbohC, -H and -J, which are involved in tip growth of root hairs or pollen tubes. Ectopic expression of the root hair factor AtRbohC/ROOT HAIR DEFECTIVE 2 (RHD2) in pollen tubes restored the atrbohH atrbohJ defects in tip growth of pollen tubes. However, expression of AtRbohH or -J in root hairs did not complement the tip growth defect in the atrbohC/rhd2 mutant. Our data indicate that Rbohs possess different ranges of enzymatic activity, and that some Rbohs have evolved to carry specific functions in cell growth.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células HEK293 , Humanos , Mutação , NADPH Oxidases/classificação , NADPH Oxidases/genética , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento
2.
Am J Bot ; 107(11): 1491-1503, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33190268

RESUMO

PREMISE: Leaf phenology is an essential developmental process in trees and an important component in understanding climate change. However, little is known about the regulation of leaf phenology in tropical trees. METHODS: To understand the regulation by temperature of leaf phenology in tropical trees, we performed daily observations of leaf production under rainfall-independent conditions using saplings of Shorea leprosula and Neobalanocarpus heimii, both species of Dipterocarpaceae, a dominant tree family of Southeast Asia. We analyzed the time-series data obtained using empirical dynamic modeling (EDM) and conducted growth chamber experiments. RESULTS: Leaf production by dipterocarps fluctuated in the absence of fluctuation in rainfall, and the peaks of leaf production were more frequent than those of day length, suggesting that leaf production cannot be fully explained by these environmental factors, although they have been proposed as regulators of leaf phenology in dipterocarps. Instead, EDM suggested a causal relationship between temperature and leaf production in dipterocarps. Leaf production by N. heimii saplings in chambers significantly increased when temperature was increased after long-term low-temperature treatment. This increase in leaf production was observed even when only nighttime temperature was elevated, suggesting that the effect of temperature on development is not mediated by photosynthesis. CONCLUSIONS: Because seasonal variation in temperature in the tropics is small, effects on leaf phenology have been overlooked. However, our results suggest that temperature is a regulator of leaf phenology in dipterocarps. This information will contribute to better understanding of the effects of climate change in the tropics.


Assuntos
Dipterocarpaceae , Sudeste Asiático , Folhas de Planta , Estações do Ano , Temperatura , Árvores
3.
Ecol Lett ; 17(10): 1299-309, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25103959

RESUMO

The role of resource availability in determining the incidence of masting has been widely studied, but how floral transition and initiation are regulated by the resource level is unclear. We tested the hypothesis that floral transition is stimulated by high resource availabiltiy in Fagus crenata based on a new technique, the expression analyses of flowering genes. We isolated F. crenata orthologues of FLOWERING LOCUS T, LEAFY and APETALA1, and confirmed their functions using transgenic Arabidopsis thaliana. We monitored the gene expression levels for 5 years and detected a cycle of on and off years, which was correlated with fluctuations of the shoot-nitrogen concentration. Nitrogen fertilisation resulted in the significantly higher expression of flowering genes than the control, where all of the fertilised trees flowered, whereas the control did not. Our findings identified nitrogen as a key regulator of mast flowering, thereby providing new empirical evidence to support the resource budget model.


Assuntos
Fagus/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Nitrogênio/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboidratos/análise , Fagus/fisiologia , Genes de Plantas , Japão , Proteínas de Domínio MADS/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Estações do Ano , Fatores de Transcrição/genética
4.
Mol Ecol ; 22(18): 4767-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23651119

RESUMO

Community-level mass flowering, known as general flowering, which occurs in South-East Asia at supra-annual irregular intervals, is considered a particularly spectacular phenomenon in tropical ecology. Recent studies have proposed several proximate factors inducing general flowering, such as drought and falls in minimum temperature. However, limited empirical data on the developmental and physiological processes have been available to test the significance of such factors. To overcome this limitation and test the hypotheses that general flowering is triggered by the proposed factors, we conducted an 'ecological transcriptome' study of a mass flowering species, Shorea beccariana, comparing meteorological data with genome-wide expression patterns obtained using next-generation sequencing. Among the 98 flowering-related genes identified, the homologs of a floral pathway integrator, SbFT, and a floral repressor, SbSVP, showed dramatic transcriptional changes before flowering, and their flowering functions were confirmed using transgenic Arabidopsis thaliana. Expression in drought-responsive and sucrose-induced genes also changed before flowering. All these expression changes occurred when the flowering-inducing level of drought was reached, as estimated using data from the preceding 10 years. These genome-wide expression data support the hypothesis that drought is a trigger for general flowering.


Assuntos
Dipterocarpaceae/genética , Secas , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Sudeste Asiático , Dipterocarpaceae/fisiologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 107(25): 11632-7, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534541

RESUMO

Plants flower in particular seasons even in natural, fluctuating environments. The molecular basis of temperature-dependent flowering-time regulation has been extensively studied, but little is known about how gene expression is controlled in natural environments. Without a memory of past temperatures, it would be difficult for plants to detect seasons in natural, noisy environments because temperature changes occurring within a few weeks are often inconsistent with seasonal trends. Our 2-y census of the expression of a temperature-dependent flowering-time gene, AhgFLC, in a natural population of perennial Arabidopsis halleri revealed that the regulatory system of this flowering-time gene extracts seasonal cues as if it memorizes temperatures over the past 6 wk. Time-series analysis revealed that as much as 83% of the variation in the AhgFLC expression is explained solely by the temperature for the previous 6 wk, but not by the temperatures over shorter or longer periods. The accuracy of our model in predicting the gene expression pattern under contrasting temperature regimes in the transplant experiments indicates that such modeling incorporating the molecular bases of flowering-time regulation will contribute to predicting plant responses to future climate changes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Proteínas de Arabidopsis/genética , Clima , DNA Complementar/metabolismo , Flores , Perfilação da Expressão Gênica , Modelos Biológicos , Modelos Estatísticos , Dados de Sequência Molecular , Filogenia , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo
6.
Front Plant Sci ; 14: 1213496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636106

RESUMO

Global warming-induced climate change causes significant agricultural problems by increasing the incidence of drought and flooding events. Waterlogging is an inevitable consequence of these changes but its effects on oil palms have received little attention and are poorly understood. Recent waterlogging studies have focused on oil palm seedlings, with particular emphasis on phenology. However, the transcriptomic waterlogging response of mature oil palms remains elusive in real environments. We therefore investigated transcriptomic changes over time in adult oil palms at plantations over a two-year period with pronounced seasonal variation in precipitation. A significant transcriptional waterlogging response was observed in the oil palm stem core but not in leaf samples when gene expression was correlated with cumulative precipitation over two-day periods. Pathways and processes upregulated or enriched in the stem core response included hypoxia, ethylene signaling, and carbon metabolism. Post-waterlogging recovery in oil palms was found to be associated with responses to heat stress and carotenoid biosynthesis. Nineteen transcription factors (TFs) potentially involved in the waterlogging response of mature oil palms were also identified. These data provide new insights into the transcriptomic responses of planted oil palms to waterlogging and offer valuable guidance on the sensitivity of oil palm plantations to future climate changes.

7.
PeerJ ; 11: e16368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047035

RESUMO

Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.


Assuntos
Dipterocarpaceae , Transcriptoma , Animais , Transcriptoma/genética , Dipterocarpaceae/genética , Flores/genética , Perfilação da Expressão Gênica , Reprodução/genética
8.
Ann Bot ; 108(4): 777-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21852275

RESUMO

BACKGROUND: It is essential to understand and predict the effects of changing environments on plants. This review focuses on the sexual reproduction of plants, as previous studies have suggested that this trait is particularly vulnerable to climate change, and because a number of ecologically and evolutionarily relevant genes have been identified. SCOPE: It is proposed that studying gene functions in naturally fluctuating conditions, or gene functions in natura, is important to predict responses to changing environments. First, we discuss flowering time, an extensively studied example of phenotypic plasticity. The quantitative approaches of ecological and evolutionary systems biology have been used to analyse the expression of a key flowering gene, FLC, of Arabidopsis halleri in naturally fluctuating environments. Modelling showed that FLC acts as a quantitative tracer of the temperature over the preceding 6 weeks. The predictions of this model were verified experimentally, confirming its applicability to future climate changes. Second, the evolution of self-compatibility as exemplifying an evolutionary response is discussed. Evolutionary genomic and functional analyses have indicated that A. thaliana became self-compatible via a loss-of-function mutation in the male specificity gene, SCR/SP11. Self-compatibility evolved during glacial-interglacial cycles, suggesting its association with mate limitation during migration. Although the evolution of self-compatibility may confer short-term advantages, it is predicted to increase the risk of extinction in the long term because loss-of-function mutations are virtually irreversible. CONCLUSIONS: Recent studies of FLC and SCR have identified gene functions in natura that are unlikely to be found in laboratory experiments. The significance of epigenetic changes and the study of non-model species with next-generation DNA sequencers is also discussed.


Assuntos
Mudança Climática , Evolução Molecular , Genes de Plantas/genética , Plantas/genética , Modelos Biológicos , Reprodução/genética
9.
Commun Biol ; 4(1): 1166, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620991

RESUMO

Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.


Assuntos
Dipterocarpaceae/genética , Secas , Duplicação Gênica , Genoma de Planta , Floresta Úmida , Malásia , Estações do Ano
10.
Syst Appl Microbiol ; 38(5): 330-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26138047

RESUMO

Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Magnoliopsida/microbiologia , Animais , Arabidopsis/microbiologia , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
PLoS One ; 6(9): e25144, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949872

RESUMO

The genus Nepenthes, a carnivorous plant, has a pitcher to trap insects and digest them in the contained fluid to gain nutrient. A distinctive character of the pitcher fluid is the digestive enzyme activity that may be derived from plants and dwelling microbes. However, little is known about in situ digestive enzymes in the fluid. Here we examined the pitcher fluid from four species of Nepenthes. High bacterial density was observed within the fluids, ranging from 7×10(6) to 2.2×10(8) cells ml(-1). We measured the activity of three common enzymes in the fluid: acid phosphatases, ß-D-glucosidases, and ß-D-glucosaminidases. All the tested enzymes detected in the liquid of all the pitcher species showed activity that considerably exceeded that observed in aquatic environments such as freshwater, seawater, and sediment. Our results indicate that high enzyme activity within a pitcher could assist in the rapid decomposition of prey to maximize efficient nutrient use. In addition, we filtered the fluid to distinguish between dissolved enzyme activity and particle-bound activity. As a result, filtration treatment significantly decreased the activity in all enzymes, while pH value and Nepenthes species did not affect the enzyme activity. It suggested that enzymes bound to bacteria and other organic particles also would significantly contribute to the total enzyme activity of the fluid. Since organic particles are themselves usually colonized by attached and highly active bacteria, it is possible that microbe-derived enzymes also play an important role in nutrient recycling within the fluid and affect the metabolism of the Nepenthes pitcher plant.


Assuntos
Fosfatase Ácida/metabolismo , Glucosidases/metabolismo , Hexosaminidases/metabolismo , Sarraceniaceae/enzimologia , Sarraceniaceae/microbiologia , Filtração , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA