Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Opt Express ; 30(11): 17754-17766, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221590

RESUMO

In this work, a hybrid sensor based on a section of hollow square core fiber (HSCF) spliced between two single mode fibers is proposed for the measurement of refractive index of liquids. The sensor, with a length of a few millimeters, operates in a transmission configuration. Due to the HSCF inner geometry, two different interferometers are generated. The first, a Mach-Zehnder interferometer, is insensitive to the external refractive index, and presents a sensitivity to temperature of (29.2 ± 1.1) pm/°C. The second one, a cladding modal interferometer, is highly sensitive to the external refractive index. An experimental resolution of 1.0 × 10-4 was achieved for this component. Due to the different responses of each interferometer to the parameters under study, a compensation method was developed to attain refractive index measurements that are temperature independent. The proposed sensor can find applications in areas where refractive index measurements are required and the control of room temperature is a challenge, such as in the food and beverage industry, as well as in biochemical or biomedical industries.

2.
Opt Express ; 30(11): 19961-19973, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221758

RESUMO

We demonstrate distributed optical fiber-based pressure measurements with sub-bar pressure resolution and 1 m spatial resolution over a ∼100 m distance using a phase-sensitive optical time-domain reflectometry technique. To do so, we have designed a novel highly birefringent microstructured optical fiber that features a high pressure to temperature sensitivity ratio, a high birefringence and a mode field diameter that is comparable to that of conventional step-index single mode fibers. Our experiments with two fibers fabricated according to the design confirm the high polarimetric pressure sensitivities (-62.4 rad×MPa-1×m-1 and -40.1 rad×MPa-1×m-1) and simultaneously low polarimetric temperature sensitivities (0.09 rad×K-1×m-1 and 0.2 rad×K-1×m-1), at a wavelength of 1550 nm. The fiber features a sufficiently uniform birefringence over its entire length (2.17×10-4 ± 7.65×10-6) and low propagation loss (∼3 dB/km), which allows envisaging pressure measurements along distances up to several kilometers.

3.
Opt Lett ; 47(15): 3708-3711, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913295

RESUMO

A fiber sensor based on a silica capillary in a balloon-like shape for simultaneous measurement of displacement and temperature is proposed and experimentally demonstrated. The sensor is fabricated by splicing a segment of a hollow-core fiber between two single-mode fibers (SMF) and by creating a balloon shape with the capillary at the top-center position. The SMF-capillary-SMF configuration excites an antiresonant (AR) guidance, and the balloon shape enhances the Mach-Zehnder interferometer (MZI). Experimental results show that, for a balloon length of 4.0 cm and a capillary length of 1.2 cm, the AR is insensitive to displacement and its sensitivity to temperature is 14.3 pm/°C, while the MZI has a sensitivity to displacement of 1.68 nm/mm in the range between 0 and 5 mm and a sensitivity to temperature of 28.6 pm/°C, twice the value of the AR. The proposed fiber sensor has only one sensing element in one configuration, which makes it simple to fabricate as well as low cost.


Assuntos
Tecnologia de Fibra Óptica , Interferometria , Desenho de Equipamento , Interferometria/métodos , Fibras Ópticas , Refratometria/métodos , Temperatura
4.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35898002

RESUMO

An inline optical fiber sensor is proposed to monitor in real time the evaporation process of ethanol-water binary mixtures. The sensor presents two interferometers, a cladding modal interferometer (CMI) and a Mach-Zehnder interferometer (MZI). The CMI is used to acquire the variations in the external medium refractive index, presenting a maximum sensitivity of 387 nm/RIU, and to attain the variation in the sample concentration profile, while the MZI monitors temperature fluctuations. For comparison purposes, an image analysis is also conducted to obtain the droplet profile. The sensor proposed in this work is a promising alternative in applications where a rigorous measurement of volatile organic compound concentrations is required, and in the study of chemical and physical properties related to the evaporation process.

5.
Opt Express ; 29(2): 1890-1891, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726393

RESUMO

We provide a correction due to an erroneous repetition rate of one of the laser systems (90 fs pulse duration) in our previously published paper [Opt. Express28, 25037 (2020)10.1364/OE.399771].

6.
Opt Express ; 29(4): 5808-5818, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726113

RESUMO

Three different types of strain and temperature sensors based on negative curvature hollow core fiber (NCHCF) are proposed. Each sensor is produced by splicing a small section of the NCHCF between two sections of single mode fiber. Different types of interferometers are obtained simply by changing the splicing conditions. The first sensor consists on a single Fabry-Perot interferometer (FPI). The remaining two configurations are attained with the same sensing structure, depending on its position in relation to the interrogation setup. Thus, a double FPI or a hybrid sensor, the latter being composed by an FPI and a Michelson interferometer, are formed. The inline sensors are of submillimeter size, thus enabling nearly punctual measurements.

7.
Sensors (Basel) ; 21(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883782

RESUMO

Antiresonant hollow core fibers (ARHCFs) have gained some attention due to their notoriously attractive characteristics on managing optical properties. In this work, an inline optical fiber sensor based on a hollow square core fiber (HSCF) is proposed. The sensor presents double antiresonance (AR), namely an internal AR and an external AR. The sensor was designed in a transmission configuration, where the sensing head was spliced between two single mode fibers (SMFs). A simulation was carried out to predict the behaviors of both resonances, and revealed a good agreement with the experimental observations and the theoretical model. The HSCF sensor presented curvature sensitivities of -0.22 nm/m-1 and -0.90 nm/m-1, in a curvature range of 0 m-1 to 1.87 m-1, and temperature sensitivities of 21.7 pm/°C and 16.6 pm/°C, in a temperature range of 50 °C to 500 °C, regarding the external resonance and internal resonance, respectively. The proposed sensor is promising for the implementation of several applications where simultaneous measurement of curvature and temperature are required.


Assuntos
Tecnologia de Fibra Óptica , Refratometria , Fibras Ópticas , Temperatura , Transdutores
8.
Opt Express ; 28(17): 25037-25047, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907034

RESUMO

Third harmonic generation in a circular liquid core step-index fiber filled with a highly transparent inorganic solvent is demonstrated experimentally using ultrafast pump pulses of different durations in the telecom domain for the first time. Specifically we achieve intermodal phase matching to the HE13 higher order mode at the harmonic wavelength and found clear indications of a non-instantaneous molecular contribution to the total nonlinearity in the spectral broadening of the pump. Spectral power evolution and efficiency of the conversion process is studied for all pulse parameters, while we found the greatest photon yield for the longest pulses as well as an unexpected blue-shift of the third harmonic wavelength with increasing pump power. Our results provide the basis for future studies aiming at using this tunable fiber platform with a sophisticated nonlinear response in the context of harmonic generation.

9.
Opt Lett ; 45(24): 6859-6862, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325914

RESUMO

Geometrically induced birefringence represents a pathway for precisely engineering the modes in fibers and is particularly relevant for applications that crucially depend on modal dispersion. Here liquid core fibers (LCFs) with elliptical cores are analyzed in view of modal properties and third-harmonic generation (THG) numerically and experimentally. Using finite element modeling, the impact of ellipticity on phase matching, inter-modal coupling, electric field distribution, and birefringence are investigated. Significant THG in practically relevant modes, in accordance with phase-matching calculations, was measured in inorganic solvent-based LCFs.

10.
Opt Lett ; 45(11): 2985-2988, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479439

RESUMO

Accurate dispersion management is key for efficient nonlinear light generation. Here, we demonstrate that composite-liquid-core fibers-fibers with binary liquid mixtures as the core medium-allow for accurate and tunable control of dispersion, loss, and nonlinearity. Specifically, we show numerically that mixtures of organic and inorganic solvents in silica capillaries yield anomalous dispersion and reasonable nonlinearity at telecommunication wavelengths. This favorable operation domain is experimentally verified in various liquid systems through dispersion-sensitive supercontinuum generation, with all results being consistent with theoretical designs and simulations. Our results confirm that mixtures introduce a cost-effective means for liquid-core fiber design that allows for loss control, nonlinear response variation, and dispersion engineering.

11.
Opt Lett ; 44(9): 2236-2239, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042192

RESUMO

Due to their unique properties such as transparency, tunability, nonlinearity, and dispersion flexibility, liquid-core fibers represent an important approach for future coherent mid-infrared light sources. However, the damage thresholds of these fibers are largely unexplored. Here we report on the generation of soliton-based supercontinua in carbon disulfide (CS2) liquid-core fibers at average power levels as high as 0.5 W operating stably for a long term (>70 h) without any kind of degradation or damage. Additionally, we also show stable high-power pulse transmission through liquid-core fibers exceeding 1 W of output average power for both CS2 and tetrachloroethylene as core materials.

12.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835433

RESUMO

The optical Vernier effect magnifies the sensing capabilities of an interferometer, allowing for unprecedented sensitivities and resolutions to be achieved. Just like a caliper uses two different scales to achieve higher resolution measurements, the optical Vernier effect is based on the overlap in the responses of two interferometers with slightly detuned interference signals. Here, we present a novel approach in detail, which introduces optical harmonics to the Vernier effect through Fabry-Perot interferometers, where the two interferometers can have very different frequencies in the interferometric pattern. We demonstrate not only a considerable enhancement compared to current methods, but also better control of the sensitivity magnification factor, which scales up with the order of the harmonics, allowing us to surpass the limits of the conventional Vernier effect as used today. In addition, this novel concept opens also new ways of dimensioning the sensing structures, together with improved fabrication tolerances.

13.
Anal Chem ; 90(22): 13243-13248, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30387601

RESUMO

Fiber-enhanced Raman spectroscopy was developed for the chemically selective and sensitive quantification of the important antibiotic cefuroxime in human urine. A novel optical sensor fiber was drawn and precisely prepared. In this fiber structure, light is strongly confined in the selectively filled liquid core, and the Raman scattered signal is collected with unprecedented efficiency over an extended interaction length. The filling, emptying, and robustness are highly improved due to the large core size (>30 µm). Broadband step-index guidance allows the free choice of the most suitable excitation wavelength in complex body fluids. The limit of detection of cefuroxime in human urine was improved by 2 orders of magnitude (to µM level). The quantification of cefuroxime was achieved in urine after oral administration. This method has great potential for the point-of-care monitoring of antibiotics concentrations and is an important step forward to enable clinicians to rapidly adjust doses.


Assuntos
Antibacterianos/urina , Cefuroxima/urina , Análise Espectral Raman/instrumentação , Calibragem , Humanos , Limite de Detecção , Análise Espectral Raman/métodos
14.
Opt Express ; 26(13): 17034-17043, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119521

RESUMO

A newly designed all-solid step-index Yb-doped aluminosilicate large mode area fiber for achieving high peak power at near diffraction limited beam quality with local adiabatic tapering is presented. The 45µm diameter fiber core and pump cladding consist of active/passively doped aluminosilicate glass produced by powder sinter technology (REPUSIL). A deliberate combination of innovative cladding and core materials was aspired to achieve low processing temperature reducing dopant diffusion during fiber fabrication, tapering and splicing. By developing a short adiabatic taper, robust seed coupling is achieved by using this Yb-doped LMA fiber as final stage of a nanosecond fiber Master Oscillator Power Amplifier (MOPA) system while maintaining near diffraction limited beam quality by preferential excitation of the fundamental mode. After application of a fiber-based endcap, the peak power could be scaled up to 375 kW with high beam quality and a measured M2 value of 1.3~1.7.

15.
Opt Express ; 26(3): 3221-3235, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401853

RESUMO

We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl4, C2Cl4). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 µm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (C2Cl4). The measured results match simulations of both the generalized and a hybrid nonlinear Schrödinger equation, with the latter resembling the characteristics of non-instantaneous medium via a static potential term and representing a simulation tool with substantially reduced complexity. We show that C2Cl4 has the potential for observing non-instantaneous soliton dynamics along meters of liquid-core fiber opening a feasible route for directly observing hybrid soliton dynamics.

16.
Appl Opt ; 57(29): 8529-8535, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461919

RESUMO

Understanding polarization in waveguides is of fundamental importance for any photonic device and is particularly relevant within the scope of fiber optics. Here, we investigate the dependence of the geometry-induced polarization behavior of single-ring antiresonant hollow-core fibers on various parameters from the experimental perspective, showing that structural deviations from an ideal polygonal shape impose birefringence and polarization-dependent loss, confirmed by a toy model. The minimal output ellipticity was found at the wavelength of lowest loss near the center of the transmission band, whereas birefringence substantially increases toward the resonances. The analysis that qualitatively also applies to other kinds of hollow-core fibers showed that maximizing the amount of linearly polarized light at the fiber output demands both operating at the wavelength of lowest loss, as well as carefully choosing the relative orientation of input polarization. This should correspond to the situation in which the difference of the core extent along the two corresponding orthogonal polarization directions is minimal. Due to their practical relevance, we expect our findings to be very important in fields such as nonlinear photonics or metrology.

17.
Sensors (Basel) ; 18(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415468

RESUMO

Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.


Assuntos
Espectrofotometria Ultravioleta , Limite de Detecção , Microfluídica , Água
18.
Opt Express ; 25(19): 22932-22946, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041599

RESUMO

We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.

19.
Opt Express ; 24(4): 3258-67, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906989

RESUMO

Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

20.
Opt Lett ; 41(15): 3519-22, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472608

RESUMO

We reveal the potential of step-index fibers consisting of a metaphosphate glass core and a silica cladding as an ultrafast octave-spanning supercontinuum source. The hybrid waveguide was fabricated by pressure-assisted melt filling and possesses a sophisticated dispersion behavior with two zero-dispersion points in the proximity of the Erbium laser bands. The fiber generates an octave-spanning supercontinuum from 0.7 to 2.4 µm if pumped at 1.56 µm with 30 fs pulses and energies as low as 300 pJ. Numerical simulations reveal soliton fission and double dispersive wave generation as the dominant broadening effect. This study highlights phosphate glasses as a promising new candidate for the next generation of broadband photonic devices, as they allow for high rare earth-doping levels and dispersion posttuning via plasmonic nanoparticle growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA