Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Anaesth Analg ; 49(1): 54-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34906421

RESUMO

OBJECTIVE: To determine the dose of phenylephrine, norepinephrine and dopamine necessary to maintain mean arterial pressure (MAP) within 70-80 mmHg during administration of isoflurane, isoflurane and vatinoxan and isoflurane, vatinoxan and dexmedetomidine at three plasma concentrations. STUDY DESIGN: Randomized crossover experimental study. ANIMALS: A group of five adult healthy neutered male cats. METHODS: Instrumentation occurred during anesthesia with isoflurane in oxygen. Isoflurane end-tidal concentration was set to 1.25 × minimum alveolar concentration (MAC). Phenylephrine, norepinephrine or dopamine was administered to maintain MAP 70-80 mmHg. A target-controlled infusion system was used to administer vatinoxan at a target plasma concentration of 1 µg mL-1 and three dexmedetomidine concentrations (5, 10 and 20 ng mL-1). Isoflurane concentration was altered to maintain an equivalent 1.25 MAC. Heart rate, arterial blood pressure, central venous pressure, pulmonary artery pressure, pulmonary artery occlusion pressure, body temperature, arterial and mixed venous blood gas, cardiac output and drug concentrations were measured at baseline (isoflurane alone), during vatinoxan administration, and during administration of vatinoxan and dexmedetomidine at the three target concentrations. RESULTS: MAP < 70 mmHg was observed with vatinoxan alone and in the dopamine treatment with dexmedetomidine concentrations ≤ 10 ng mL-1. Norepinephrine and phenylephrine maintained MAP 70-80 mmHg during vatinoxan and dexmedetomidine ≤ 10 ng mL-1. As the target dexmedetomidine concentration increased, the dose of norepinephrine and phenylephrine needed to maintain MAP 70-80 mmHg decreased; no treatment was necessary to maintain MAP > 70 mmHg at the 20 ng mL-1 target dexmedetomidine concentration in most cats. CONCLUSIONS AND CLINICAL RELEVANCE: Norepinephrine and phenylephrine, but not dopamine, are effective to prevent hypotension in isoflurane-anesthetized cats administered dexmedetomidine and vatinoxan.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Hipotensão , Isoflurano , Anestésicos Inalatórios/farmacologia , Animais , Pressão Sanguínea , Dexmedetomidina/farmacologia , Dopamina , Frequência Cardíaca , Hipotensão/induzido quimicamente , Hipotensão/prevenção & controle , Hipotensão/veterinária , Isoflurano/farmacologia , Masculino , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Quinolizinas
2.
Appl Environ Microbiol ; 81(10): 3561-70, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769824

RESUMO

IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P < 0.001) and increased movement of the IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 µg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.


Assuntos
Antibacterianos/administração & dosagem , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Transferência Genética Horizontal/efeitos dos fármacos , Plasmídeos/genética , Doenças dos Suínos/tratamento farmacológico , Tetraciclina/administração & dosagem , Animais , Antibacterianos/análise , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Plasmídeos/metabolismo , Suínos , Doenças dos Suínos/microbiologia , Tetraciclina/análise
3.
Nat Microbiol ; 4(12): 2523-2537, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527793

RESUMO

Enteroviruses (EVs) comprise a large genus of positive-sense, single-stranded RNA viruses whose members cause a number of important and widespread human diseases, including poliomyelitis, myocarditis, acute flaccid myelitis and the common cold. How EVs co-opt cellular functions to promote replication and spread is incompletely understood. Here, using genome-scale CRISPR screens, we identify the actin histidine methyltransferase SET domain containing 3 (SETD3) as critically important for viral infection by a broad panel of EVs, including rhinoviruses and non-polio EVs increasingly linked to severe neurological disease such as acute flaccid myelitis (EV-D68) and viral encephalitis (EV-A71). We show that cytosolic SETD3, independent of its methylation activity, is required for the RNA replication step in the viral life cycle. Using quantitative affinity purification-mass spectrometry, we show that SETD3 specifically interacts with the viral 2A protease of multiple enteroviral species, and we map the residues in 2A that mediate this interaction. 2A mutants that retain protease activity but are unable to interact with SETD3 are severely compromised in RNA replication. These data suggest a role of the viral 2A protein in RNA replication beyond facilitating proteolytic cleavage. Finally, we show that SETD3 is essential for in vivo replication and pathogenesis in multiple mouse models for EV infection, including CV-A10, EV-A71 and EV-D68. Our results reveal a crucial role of a host protein in viral pathogenesis, and suggest targeting SETD3 as a potential mechanism for controlling viral infections.


Assuntos
Enterovirus/metabolismo , Enterovirus/patogenicidade , Histona Metiltransferases/metabolismo , Metiltransferases/metabolismo , Animais , Sistemas CRISPR-Cas , Viroses do Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Encefalite Viral , Enterovirus/genética , Infecções por Enterovirus/virologia , Histona Metiltransferases/genética , Camundongos , Mielite/virologia , Doenças Neuromusculares/virologia , Proteólise , Proteínas Virais , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA