Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stem Cells ; 39(9): 1270-1284, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34013984

RESUMO

Acute myeloid leukemia (AML) is characterized by an expansion of leukemic cells and a simultaneous reduction of normal hematopoietic precursors in the bone marrow (BM) resulting in hematopoietic insufficiency, but the underlying mechanisms are poorly understood in humans. Assuming that leukemic cells functionally inhibit healthy CD34+ hematopoietic stem and progenitor cells (HSPC) via humoral factors, we exposed healthy BM-derived CD34+ HSPC to cell-free supernatants derived from AML cell lines as well as from 24 newly diagnosed AML patients. Exposure to AML-derived supernatants significantly inhibited proliferation, cell cycling, colony formation, and differentiation of healthy CD34+ HSPC. RNA sequencing of healthy CD34+ HSPC after exposure to leukemic conditions revealed a specific signature of genes related to proliferation, cell-cycle regulation, and differentiation, thereby reflecting their functional inhibition on a molecular level. Experiments with paired patient samples showed that these inhibitory effects are markedly related to the immunomagnetically enriched CD34+ leukemic cell population. Using PCR, ELISA, and RNA sequencing, we detected overexpression of TGFß1 in leukemic cells on the transcriptional and protein level and, correspondingly, a molecular signature related to TGFß1 signaling in healthy CD34+ HSPC. This inhibitory effect of TGFß1 on healthy hematopoiesis was functionally corrobated and could be pharmacologically reverted by SD208, an inhibitor of TGFß receptor 1 signaling. Overall, these data indicate that leukemic cells induce functional inhibition of healthy CD34+ HSPC, at least in part, through TGFß1, suggesting that blockage of this pathway may improve hematopoiesis in AML.


Assuntos
Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Antígenos CD34/metabolismo , Medula Óssea/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética
2.
Haematologica ; 103(9): 1462-1471, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29773599

RESUMO

Mesenchymal stromal cells are involved in the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia, but the underlying mechanisms are incompletely understood. To further characterize the pathological phenotype we performed RNA sequencing of mesenchymal stromal cells from patients with myelodysplastic syndromes and acute myeloid leukemia and found a specific molecular signature of genes commonly deregulated in these disorders. Pathway analysis showed a strong enrichment of genes related to osteogenesis, senescence, inflammation and inhibitory cytokines, thereby reflecting the structural and functional deficits of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia on a molecular level. Further analysis identified transforming growth factor ß1 as the most probable extrinsic trigger factor for this altered gene expression. Following exposure to transforming growth factor ß1, healthy mesenchymal stromal cells developed functional deficits and adopted a phenotype reminiscent of that observed in patient-derived stromal cells. These suppressive effects of transforming growth factor ß1 on stromal cell functionality were abrogated by SD-208, an established inhibitor of transforming growth factor ß receptor signaling. Blockade of transforming growth factor ß signaling by SD-208 also restored the osteogenic differentiation capacity of patient-derived stromal cells, thus confirming the role of transforming growth factor ß1 in the bone marrow microenvironment of patients with myelodysplastic syndromes and acute myeloid leukemia. Our findings establish transforming growth factor ß1 as a relevant trigger causing functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia and identify SD-208 as a candidate to revert these effects.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fator de Crescimento Transformador beta1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/patologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fenótipo , Pteridinas/farmacologia , Análise de Sequência de RNA , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
3.
Laterality ; 21(1): 34-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26333384

RESUMO

Non-pathological, spontaneous mirror writing, whether complete or partial, has long been associated with writing with the left hand and attributed to the fact that abductive writing, which most people find easier, is from right to left when people write with their left hand. However, recent research suggests another explanation: children who do not know the orientation of the letters and digits may apply an implicit right-writing rule which causes them to invert mainly left-oriented characters (e.g., J, 3). But would left-hand writers apply such a rule? The present study examines the relationship between these two explanations of mirror writing and asks whether they coexist in children who write with their left hand. Is the abductive writing explanation specific to mirror writing by left-hand writers and the implicit right-writing rule specific to right-hand writers? A comparison of 59 children who wrote with their left hand and 59 children who wrote with their right hand (matched for age and school experience) provided clear evidence against the abductive-writing explanation and in favour of the right-writing rule for both groups. Therefore, spontaneous mirror writing in typical 5- to 6-year-olds does not seem to be a function of preferred writing hand.


Assuntos
Lateralidade Funcional , Mãos/fisiologia , Escrita Manual , Orientação , Fatores Etários , Análise de Variância , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Nomes
4.
Blood Adv ; 8(10): 2575-2588, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38241490

RESUMO

ABSTRACT: The hallmark of multiple myeloma (MM) is a clonal plasma cell infiltration in the bone marrow accompanied by myelosuppression and osteolysis. Premalignant stages such as monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic stages such as smoldering myeloma (SMM) can progress to MM. Mesenchymal stromal cells (MSCs) are an integral component of the bone marrow microenvironment and play an important role in osteoblast differentiation and hematopoietic support. Although stromal alterations have been reported in MM contributing to hematopoietic insufficiency and osteolysis, it is not clear whether alterations in MSC already occur in MGUS or SMM. In this study, we analyzed MSCs from MGUS, SMM, and MM regarding their properties and functionality and performed messenger RNA sequencing to find underlying molecular signatures in different disease stages. A high number of senescent cells and a reduced osteogenic differentiation capacity and hematopoietic support were already present in MGUS MSC. As shown by RNA sequencing, there was a broad spectrum of differentially expressed genes including genes of the BMP/TGF-signaling pathway, detected already in MGUS and that clearly increases in patients with SMM and MM. Our data may help to block these signaling pathways in the future to hinder progression to MM.


Assuntos
Células-Tronco Mesenquimais , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Mieloma Múltiplo Latente , Humanos , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Masculino , Feminino , Idoso
5.
Cancers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893194

RESUMO

Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets.

6.
J Exp Clin Cancer Res ; 33: 59, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25011684

RESUMO

BACKGROUND: Previous studies have shown that class-I histone deacetylase (HDAC) 8 mRNA is upregulated in urothelial cancer tissues and urothelial cancer cell lines compared to benign controls. Using urothelial cancer cell lines we evaluated whether specific targeting of HDAC8 might be a therapeutic option in bladder cancer treatment. METHODS: We conducted siRNA-mediated knockdown and specific pharmacological inhibition of HDAC8 with the three different inhibitors compound 2, compound 5, and compound 6 in several urothelial carcinoma cell lines with distinct HDAC8 expression profiles. Levels of HDAC and marker proteins were determined by western blot analysis and mRNA levels were measured by quantitative real-time PCR. Cellular effects of HDAC8 suppression were analyzed by ATP assay, flow cytometry, colony forming assay and migration assay. RESULTS: Efficient siRNA-mediated knockdown of HDAC8 reduced proliferation up to 45%. The HDAC8 specific inhibitors compound 5 and compound 6 significantly reduced viability of all urothelial cancer cell lines (IC50 9 - 21 µM). Flow cytometry revealed only a slight increase in the sub-G1 fraction indicating a limited induction of apoptosis. Expression of thymidylate synthase was partly reduced; PARP-cleavage was not detected. The influence of the pharmacological inhibition on clonogenic growth and migration show a cell line- and inhibitor-dependent reduction with the strongest effects after treatment with compound 5 and compound 6. CONCLUSIONS: Deregulation of HDAC8 is frequent in urothelial cancer, but neither specific pharmacological inhibition nor siRNA-mediated knockdown of HDAC8 impaired viability of urothelial cancer cell lines in a therapeutic useful manner. Accordingly, HDAC8 on its own is not a promising drug target in bladder cancer.


Assuntos
Histona Desacetilases/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/terapia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Terapia de Alvo Molecular , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
7.
Cancer Genomics Proteomics ; 11(3): 141-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24969694

RESUMO

BACKGROUND: Urothelial carcinoma (UC) is characterized by multiple recurrent chromosomal changes on a background of increasing genomic instability. To define target genes of recurrent deletions and amplifications, we explored which gene alterations are common in UC, in two recently established cell lines, BC44 and BC61. MATERIALS AND METHODS: Genes located in regions of gain or deletion in the cell lines were identified by array comparative genomic hybridization (aCGH). Six published microarray datasets were analyzed for genes differentially expressed between urothelial tumor vs. normal tissues. Gene expression and chromosomal changes were compared in BC61 cells. RESULTS: The cell lines share homozygous deletions at 9p21 around CDKN2A and amplifications at 11q13.2 around CCND1. In both cell lines 11 genes were commonly lost and 115 gained. Across UC in general, 230 genes were expressed stronger and 349 weaker; a subset displaying corresponding genetic changes in the cell lines. The commonly affected subset contains well-investigated genes like E2F1 and CCNE1, but also several genes not yet sufficiently investigated in UC. DISCUSSION: Our approach highlights genes involved in cell cycle regulation, apoptosis and signal transduction as commonly deregulated across UC. Nevertheless, many chromosomal regions undergoing recurrent changes harbor several commonly deregulated genes that may act jointly in UC development and progression.


Assuntos
Aberrações Cromossômicas , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Genótipo , Humanos
8.
Urol Oncol ; 31(8): 1770-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22944197

RESUMO

OBJECTIVE: To determine histone deacetylase (HDAC) isoenzyme expression patterns in urothelial cancer tissues and cell lines and investigate their potential to predict the efficacy of the HDAC inhibitor vorinostat. MATERIALS AND METHODS: Expression of HDAC mRNAs was determined by quantitative RT-PCR in 18 urothelial cancer cell lines (UCC), normal uroepithelial controls (NUC), 24 urothelial cancer tissues, and 12 benign controls. Results were compared with published microarray data. Effects of pan-HDAC inhibitor vorinostat and on UCCs were determined by viability and apoptosis assays, cell cycle analysis, and measurements of p21(CIP1), thymidylate synthase (TS), and EZH2. In addition, protein expression levels of HDACs were investigated in UCCs. RESULTS: Prominent changes in UCCs were HDAC2 and/or HDAC8 up-regulation in 11 of 18 cell lines and decreased expression of HDAC4, HDAC5, and/or HDAC7 mRNA in 15 of 18 cell lines. In cancer tissues, HDAC8 was likewise significantly up-regulated (P = 0.002), whereas HDAC2 up-regulation was detected only in a subset of tumors (9/24, P = 0.085). Overexpression of HDAC2 and HDAC8 mRNA did not correspond with the protein level. Vorinostat induced G2/M arrest, an increase in the sub-G1 fraction, up-regulation of p21, and down-regulation of TS in all UCC. Effects on EZH2 and PARP cleavage as well as activation of caspase 3/7 differed between cell lines. Associations between the overall sensitivity to the pan-HDACi vorinostat and overexpression of HDAC2 and HDAC8 mRNA were not observed. CONCLUSIONS: In urothelial cancer, up-regulation of HDAC2 and HDAC8 and down-regulation of HDAC4, HDAC5, and HDAC7 mRNA are common findings. The treatment effect of the pan-HDAC inhibitor vorinostat was variable in UCCs and up-regulation of HDAC2 and HDAC8 was not predictive for treatment response. Whether selective targeting of HDAC2, HDAC8, or other HDACs deregulated in urothelial cancer (e.g., HDAC4, HDAC5, and HDAC7) result in a more consistent treatment response needs further investigation.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Imuno-Histoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Poli(ADP-Ribose) Polimerases/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Vorinostat
9.
Front Oncol ; 3: 255, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24133654

RESUMO

Changes in DNA methylation frequently accompany cancer development. One prominent change is an apparently genome-wide decrease in methylcytosine that is often ascribed to DNA hypomethylation at retroelements comprising nearly half the genome. DNA hypomethylation may allow reactivation of retroelements, enabling retrotransposition, and causing gene expression disturbances favoring tumor development. However, neither the extent of hypomethylation nor of retroelement reactivation are precisely known. We therefore assessed DNA methylation and expression of three major classes of retroelements (LINE-1, HERV-K, and AluY) in human urinary bladder cancer tissues and cell lines by pyrosequencing and quantitative reverse transcription-polymerase chain reaction, respectively. We found substantial global LINE-1 DNA hypomethylation in bladder cancer going along with a shift toward full-length LINE-1 expression. Thus, pronounced differences in LINE-1 expression were observed, which may be promoted, among others, by LINE-1 hypomethylation. Significant DNA hypomethylation was found at the HERV-K_22q11.23 proviral long terminal repeat (LTR) in bladder cancer tissues but without reactivation of its expression. DNA methylation of HERVK17, essentially absent from normal urothelial cells, was elevated in cell lines from invasive bladder cancers. Accordingly, the faint expression of HERVK17 in normal urothelial cells disappeared in such cancer cell lines. Of 16 additional HERV-Ks, expression of 7 could be detected in the bladder, albeit generally at low levels. Unlike in prostate cancers, none of these showed significant expression changes in bladder cancer. In contrast, expression of the AluYb8 but not of the AluYa5 family was significantly increased in bladder cancer tissues. Collectively, our findings demonstrate a remarkable specificity of changes in expression and DNA methylation of retroelements in bladder cancer with a significantly different pattern from that in prostate cancer.

10.
Asian J Androl ; 14(3): 436-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367183

RESUMO

Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.


Assuntos
Epigênese Genética/genética , Impressão Genômica , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/genética , Complexo Repressor Polycomb 2 , Prognóstico , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cell Oncol (Dordr) ; 35(4): 243-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22669776

RESUMO

BACKGROUND: Using a novel cell culture technique, we established two new cell lines, BC44 and BC61, from papillary urothelial carcinoma and analyzed them for genetic changes typical of this tumor type. METHODS AND RESULTS: Karyotyping revealed aneuploid karyotypes with loss of chromosome 9 and rearranged chromosome 5p. Molecular analysis showed CDKN2A deletions but wild-type PIK3CA. BC61 contained a G372C FGFR3 mutation. TP53 was not mutated in either cell line and BC61 expressed normal full-length protein. In contrast, BC44 exclusively expressed cytoplasmic and nuclear p53Δ40 and 133 isoforms from the alternative promoter P2 as revealed by Western blotting, immunocytochemistry and PCR. The only discernible difference in TP53 in BC44 was homozygosity for the deletion allele of the rs17878362 polymorphism in the P2 promoter. Expression of p53 isoforms was also detected in a few other urothelial carcinoma cell lines and tumor cultures and in 4 out of 28 carcinoma tissues. CONCLUSION: In urothelial cancers, TP53 is typically inactivated by mutations in one allele and loss of the wildtype allele and more frequently in invasive compared to papillary carcinomas. We show that some urothelial carcinomas may predominantly or exclusively express isoforms which are not detected by commonly used antibodies to epitopes located in the p53 TA amino-terminal region. Expression of these isoforms may constitute a further mode of p53 inactivation in urothelial carcinoma. Our findings raise the question to which extent this mechanism may compromise wildtype p53 function in papillary tumors in particular, where point mutations in the gene are rare.


Assuntos
Processamento Alternativo , Carcinoma Papilar/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Bexiga Urinária/genética , Urotélio/metabolismo , Sequência de Bases , Western Blotting , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Análise Mutacional de DNA , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Cariotipagem Espectral , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA