RESUMO
We have developed a statistical model-based approach to the quality analysis (QA) and quality control (QC) of a gas micro pre-concentrator chip (µPC) performance when manufactured at scale for chemical and biochemical analysis of volatile organic compounds (VOCs). To test the proposed model, a medium-sized university-led production batch of 30 wafers of chips were subjected to rigorous chemical performance testing. We quantitatively report the outcomes of each manufacturing process step leading to the final functional chemical sensor chip. We implemented a principal component analysis (PCA) model to score individual chip chemical performance, and we observed that the first two principal components represent 74.28% of chemical testing variance with 111 of 118 viable chips falling into the 95% confidence interval. Chemical performance scores and chip manufacturing data were analyzed using a multivariate regression model to determine the most influential manufacturing parameters and steps. In our analysis, we find the amount of sorbent mass present in the chip (variable importance score = 2.6) and heater and the RTD resistance values (variable importance score = 1.1) to be the manufacturing parameters with the greatest impact on chemical performance. Other non-obvious latent manufacturing parameters also had quantified influence. Statistical distributions for each manufacturing step will allow future large-scale production runs to be statistically sampled during production to perform QA/QC in a real-time environment. We report this study as the first data-driven, model-based production of a microfabricated chemical sensor.
RESUMO
The adequate odorization of natural gas is critical to identify gas leaks and to reduce accidents. To ensure odorization, natural gas utility companies collect samples to be processed at core facilities or a trained human technician smells a diluted natural gas sample. In this work, we report a detection platform that addresses the lack of mobile solutions capable of providing quantitative analysis of mercaptans, a class of compounds used to odorize natural gas. Detailed description of the platform hardware and software components is provided. Designed to be portable, the platform hardware facilitates extraction of mercaptans from natural gas, separation of individual mercaptan species, and quantification of odorant concentration, with results reported at point-of-sampling. The software was developed to accommodate skilled users as well as minimally trained operators. Detection and quantification of six commonly used mercaptan compounds (ethyl mercaptan, dimethyl sulfide, n-propylmercaptan, isopropyl mercaptan, tertbutyl mercaptan, and tetrahydrothiophene) at typical odorizing concentrations of 0.1-5 ppm was performed using the device. We demonstrate the potential of this technology to ensure natural gas odorizing concentrations throughout distribution systems.