Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Physiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967996

RESUMO

During pregnancy an increased cardiac output ( Q ̇ $\dot{Q}$ ) and blood volume (BV) occur to support fetal growth. Increased Q ̇ $\dot{Q}$ and BV also occur during chronic endurance exercise training and benefit performance. We investigated if sprint interval training (SIT) undertaken early postpartum maintains the elevated Q ̇ $\dot{Q}$ and BV of pregnancy and benefits performance. The participant, a competitive field hockey player and former cyclist, visited our laboratory at 2 weeks of gestation (baseline) and postpartum pre-, mid- and post-intervention (PPpre, PPmid and PPpost). Delivery was uncomplicated and she felt ready to start the SIT programme 5 weeks postpartum. Inert gas rebreathing was used to measure peak exercise Q ̇ $\dot{Q}$ ( Q ̇ $\dot{Q}$ peak); V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ was measured with a metabolic cart; and postpartum haematological values were measured with carbon monoxide rebreathing. The 18 SIT sessions progressed from four to eight sprints at 130% of V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ peak power output. Q ̇ $\dot{Q}$ peak increased from baseline at all postpartum time points (baseline 16.2 vs. 17.5, 16.8 and 17.2 L/min at PPpre, PPmid and PPpost, respectively). Relative V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ remained below baseline values at all postpartum measurements (baseline 44.9 vs. 41.0, 42.3 and 42.5 mL/kg/min at PPpre, PPmid and PPpost, respectively) whereas absolute V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ rapidly reached baseline values postpartum (baseline 3.19 vs. 3.12, 3.23 and 3.18 L/min at PPpre, PPmid and PPpost, respectively). Postpartum BV (5257, 4271 and 5214 mL at PPpre, PPmid and PPpost, respectively) and Hbmass (654, 525 and 641 g at PPpre, PPmid and PPpost, respectively) were similar between PPpre and PPpost but decreased alongside Q ̇ $\dot{Q}$ peak at PPmid. Peak power was returned to pre-pregnancy values by intervention end (302 vs. 303 W, baseline vs. PPpost). These findings show that SIT undertaken early postpartum defends the elevated Q ̇ $\dot{Q}$ peak of pregnancy and rapidly returns absolute V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ and peak power to baseline levels. HIGHLIGHTS: What is the central question of this study? Can the enhanced cardiac output of pregnancy be maintained with strenous exercise training undertaken early postpartum. What is the main finding and its importance? Baseline values of absolute oxygen consumption, peak power output and peak exercise cardiac output can be regained rapidly or surpassed following 6 weeks of sprint interval training postpartum. Sprint interval training can be used by endurance trained females to safely resume training early postpartum, allowing a rapid and efficient return to baseline fitness levels.

2.
Physiol Rep ; 12(7): e16005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605426

RESUMO

In this review, we discuss some of the recent advances in our understanding of the physiology of the air pollution and exercise. The key areas covered include the effect of exercise intensity, the effects of pre-exposure to air pollution, acclimation to air pollution, and the utility of masks during exercise. Although higher intensity exercise leads to an increase in the inhaled dose of pollutants for a given distance traveled, the acute effects of (diesel exhaust) air pollution do not appear to be more pronounced. Second, exposure to air pollution outside of exercise bouts seems to have an effect on exercise response, although little research has examined this relationship. Third, humans appear to have an ability to acclimate to ground level ozone, but not other pollutants. And finally, masks may have beneficial effects on certain outcomes at low intensity exercise in pollution with significant levels of particles, but more study is required in realistic conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Emissões de Veículos , Exercício Físico
3.
J Appl Physiol (1985) ; 136(6): 1507-1515, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660726

RESUMO

Ground-level ozone (O3) is a potent air pollutant well recognized to acutely induce adverse respiratory symptoms and impairments in pulmonary function. However, it is unclear how the hyperpnea of exercise may modulate these effects, and the subsequent consequences on exercise performance. We tested the hypothesis that pulmonary function and exercise capability would be diminished, and symptom development would be increased during peak real-world levels of O3 exposure compared with room air. Twenty aerobically trained participants [13 M, 7 F; maximal O2 uptake (V̇o2max), 64.1 ± 7.0 mL·kg-1·min-1] completed a three-visit double-blinded, randomized crossover trial. Following a screening visit, participants were exposed to 170 ppb O3 or room air (<10 ppb O3) on separate visits during exercise trials, consisting of a 25-min moderate-intensity warmup, 30-min heavy-intensity bout, and a subsequent time-to-exhaustion (TTE) performance test. No differences in O2 uptake or ventilation were observed during submaximal exercise between conditions. During the TTE test, we observed significantly lower end-exercise O2 uptake (-3.2 ± 4.3%, P = 0.004), minute ventilation (-3.2 ± 6.5%, P = 0.043), tidal volume (-3.6 ± 5.1%, P = 0.008), and a trend toward lower exercise duration in O3 compared with room air (-10.8 ± 26.5%, P = 0.092). As decreases in O2 uptake and alterations in respiratory pattern were also present at matched time segments between conditions, a limitation of oxygen transport seems likely during maximal exercise. A more comprehensive understanding of the direct mechanisms that limit oxygen transport during exercise in high-pollutant concentrations is key for mitigating performance changes.NEW & NOTEWORTHY We demonstrate that in highly trained endurance athletes, exposure to peak real-world levels of O3 air pollution (170 ppb) significantly diminishes O2 uptake along with corresponding changes in ventilation during maximal exercise. As no differences were observed during extended submaximal exercise, a combined effect of effective dose of pollution and exercise intensity on severity of responses seems likely.


Assuntos
Atletas , Estudos Cross-Over , Exercício Físico , Consumo de Oxigênio , Ozônio , Humanos , Masculino , Adulto , Método Duplo-Cego , Feminino , Consumo de Oxigênio/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Exercício Físico/fisiologia , Poluentes Atmosféricos/efeitos adversos , Resistência Física/fisiologia , Resistência Física/efeitos dos fármacos , Ciclismo/fisiologia , Adulto Jovem , Teste de Esforço/métodos
4.
Health Psychol Rev ; : 1-31, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108077

RESUMO

Exercise and nature exposure are independently recognised for their positive relationship with health, but their combined effects are not fully understood. The present review summarises the evidence that compares physiological and perceptual differences of a single bout of exercise performed outdoors versus indoors. Nine databases were searched for articles published before March 2021 which utilised controlled designs to assess at least one physiological outcome during or after a single acute bout of outdoor exercise. When appropriate, quantitative analyses were completed. Quality of articles was assessed using the Cochrane Risk of Bias Assessment Tool. The findings of 38 articles (Total N = 1168) were examined. Participants were primarily healthy. Summarised outcomes included objective exercise intensity, perceived exertion, performance, neuroendocrine and metabolic responses, cardiovascular responses, thermoregulation, enjoyment, intention for future exercise, and perceptions of the environment. Outdoor environments increased enjoyment (N = 234, K = 10, g = 1.24, 95% CI = [0.59, 1.89], p < 0.001). Findings for remaining outcomes were non-significant or inconclusive and challenging to interpret due to high risk of bias. Overall, outdoor exercise appears to feel more enjoyable than indoor exercise when matched for intensity, with equivocal physiological benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA