Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2827: 207-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985273

RESUMO

In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.


Assuntos
Passiflora , Técnicas de Embriogênese Somática de Plantas , Técnicas de Cultura de Tecidos , Passiflora/genética , Passiflora/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Transformação Genética , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas
2.
Methods Mol Biol ; 2827: 223-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985274

RESUMO

Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens , Bixaceae , Transformação Genética , Agrobacterium tumefaciens/genética , Bixaceae/genética , Bixaceae/metabolismo , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
3.
Methods Mol Biol ; 2527: 247-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951196

RESUMO

In situ hybridization with mRNA probes enables the detection and localization of gene expression in plant somatic embryogenesis samples. BbrizSERK is a gene that is expressed in embryogenic cells and tissues of Brachiaria. Here we describe methods used for in situ hybridization to localize BbrizSERK transcripts during somatic embryogenesis of Brachiaria brizantha according to the plant material and observations intended, using paraffin or butyl methyl methacrylate resin-embedded samples, as well as a method for whole-mount preparation applicable for the analysis of other genes involved in embryogenic processes, along with other in vitro processes.


Assuntos
Brachiaria , Brachiaria/genética , Desenvolvimento Embrionário , Hibridização In Situ
4.
Front Plant Sci ; 12: 697556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490003

RESUMO

Melocactus glaucescens is an endangered cactus highly valued for its ornamental properties. In vitro shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated de novo transcriptome data, describing in vitro shoot organogenesis induction in M. glaucescens. Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) and CALMODULIN (CaM) genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of M. glaucescens after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.

5.
Front Plant Sci ; 11: 1314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983203

RESUMO

Cacti have a highly specialized stem that enables survival during extended dry periods. Despite the ornamental value of cacti and the fact that stems represent the main source of explants in tissue culture, there are no studies on their morpho-anatomical and cytological characteristics in Melocactus. The present study seeks to address the occurrence of cells with mixed ploidy level in cacti tissues. Specifically, we aim to understand how Melocactus stem tissue is organized, how mixoploidy is distributed when present, and whether detected patterns of ploidy change after long periods of in vitro culture. To analyze tissue organization, Melocactus glaucescens and Melocactus paucispinus plants that had been germinated and cultivated in vitro were analyzed for stem structure using toluidine blue, Xylidine Ponceau, Periodic Acid Schiff, ruthenium red, and acid floroglucin. To investigate patterns of ploidy, apical, medial, and basal zones of the stem, as well as, periphery, cortex, and stele (vascular tissue and pith) regions of the stem and root apexes from four- and ten-year old cultured in vitro were analyzed by flow cytometry. X-ray micro-computed tomography (XRµCT) was performed with fragments of stems from both species. The scarcity of support elements (i.e., sclereids and fibers) indicates that epidermis, hypodermis, and wide-band tracheids present in cortical vascular bundles and stele, as well as water stored in aquifer parenchyma cells along the cortex, provide mechanical support to the stem. Parenchyma cells increase in volume with a four-fold increase in ploidy. M. glaucescens and M. paucispinus exhibit the same pattern of cell ploidy irrespective of topophysical region or age, but there is a marked difference in ploidy between the stem periphery (epidermis and hypodermis), cortex, stele, and roots. Mixoploidy in Melocactus is not related to the age of the culture, but is a developmental trait, whereby endocycles promote cell differentiation to accumulate valuable water.

6.
Protoplasma ; 256(3): 601-614, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30357479

RESUMO

Pfaffia glomerata is a medically important species because it produces the phytoecdysteroid 20-hydroxyecdysone (20-E). However, there has been no ready-to-use transcriptome data available in the literature for this plant. Here, we present de novo transcriptome sequencing of RNA from P. glomerata in order to investigate the 20-E production as well as to understand the biochemical pathway of secondary metabolites in this non-model species. We then analyze the effect of photoautotrophy on the production of 20-E genes phylogenetically identified followed by expression analysis. For this, total messenger RNA (mRNA) from leaves, stems, roots, and flowers was used to construct indexed mRNA libraries. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 164,439 transcripts were annotated. In addition, the effect of photoautotrophy in two genes putatively involved in the 20-E synthesis pathway was analyzed. The Phantom gene (CYP76C), a precursor of the route, showed increased expression in P. glomerata plants cultured under photoautotrophic conditions. This was accompanied by increased production of this metabolite indicating a putative involvement in 20-E synthesis. This work reveals that several genes in the P. glomerata transcriptome are related to secondary metabolism and stresses, that genes of the P450 family participate in the 20-E biosynthesis route, and that plants cultured under photoautotrophic conditions promote an upregulated Phantom gene and enhance the productivity of 20-E. The data will be used for future investigations of the 20-E synthesis pathway in P. glomerata while offering a better understanding of the metabolism of the species.


Assuntos
Amaranthaceae/genética , Processos Autotróficos , Sistema Enzimático do Citocromo P-450/genética , Ecdisterona/biossíntese , Genes de Plantas , Família Multigênica , Processos Fototróficos , Transcriptoma/genética , Processos Autotróficos/genética , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Processos Fototróficos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA
7.
Methods Mol Biol ; 1815: 47-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981113

RESUMO

In vitro plant regeneration systems have turned into invaluable tools to plant biotechnology. Despite being poorly understood, the molecular mechanisms underlying the control of both morphogenetic pathways, de novo organogenesis and somatic embryogenesis, have been supported by recent findings involving proteome-, metabolome-, and transcriptome-based profiles. Notwithstanding, the integration of molecular data with structural aspects has been an important strategy of study attempting to elucidate the basis of the cell competence acquisition to further follow commitment and determination to specific a particular in vitro regeneration pathway. In that sense, morpho-histological tools have allowed to recognize cellular markers and patterns of gene expression at cellular level and this way have collaborated in the identification of the cell types with high regenerative capacity. This chapter ties together up those fundamental and important microscopy techniques that help to elucidate that regeneration occurs, most of the time, from epidermis or subepidermal cells and from the procambial cells (pericycle and vascular parenchyma). Important findings are discussed toward ultrastructural differences observed in the nuclear organization among pluripotent and totipotent cells, implying that regeneration occurs from two cellular mechanisms based on cellular reprogramming or reactivation.


Assuntos
Células Vegetais/metabolismo , Plantas/anatomia & histologia , Regeneração , Hibridização In Situ , Células Vegetais/ultraestrutura , Plantas/ultraestrutura
8.
Protoplasma ; 254(5): 2017-2034, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28290060

RESUMO

The wild grass species Brachypodium distachyon (L.) has been proposed as a new model for temperate grasses. Among the biotechnological tools already developed for the species, an efficient induction protocol of somatic embryogenesis (SE) using immature zygotic embryos has provided the basis for genetic transformation studies. However, a systematic work to better understanding the basic cellular and molecular mechanisms that underlie the SE process of this grass species is still missing. Here, we present new insights at the morpho-histological, histochemical, and molecular aspects of B. distachyon SE pathway. Somatic embryos arose from embryogenic callus formed by cells derived from the protodermal-dividing cells of the scutellum. These protodermal cells showed typical meristematic features and high protein accumulation which were interpreted as the first observable steps towards the acquisition of a competent state. Starch content decreased along embryogenic callus differentiation supporting the idea that carbohydrate reserves are essential to morphogenetic processes. Interestingly, starch accumulation was also observed at late stages of SE process. Searches in databanks revealed three sequences available annotated as BdSERK, being two copies corresponding to SERK1 and one showing greater identity to SERK2. In silico analysis confirmed the presence of characteristic domains in a B. distachyon Somatic Embryogenesis Receptor Kinase genes candidates (BdSERKs), which suggests SERK functions are conserved in B. distachyon. In situ hybridization demonstrated the presence of transcripts of BdSERK1 in all development since globular until scutellar stages. The results reported in this study convey important information about the morphogenetic events in the embryogenic pathway which has been lacking in B. distachyon. This study also demonstrates that B. distachyon provides a useful model system for investigating the genetic regulation of SE in grass species.


Assuntos
Brachypodium/embriologia , Reprogramação Celular/fisiologia , Proteínas de Plantas/metabolismo , Brachypodium/metabolismo , Reprogramação Celular/genética , Genoma de Planta/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA