Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(16): 6599-6605, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969812

RESUMO

Controlling the flow of charge neutral interlayer exciton (IX) quasiparticles can potentially lead to low loss excitonic circuits. Here, we report unidirectional transport of IXs along nanoscale electrostatically defined channels in an MoSe2-WSe2 heterostructure. These results are enabled by a lithographically defined triangular etch in a graphene gate to create a potential energy "slide". By performing spatially and temporally resolved photoluminescence measurements, we measure smoothly varying IX energy along the structure and high speed exciton flow with a drift velocity up to 2 × 106 cm/s, an order of magnitude larger than previous experiments. Furthermore, exciton flow can be controlled by saturating exciton population in the channel using a second laser pulse, demonstrating an optically gated excitonic transistor. Our work paves the way toward low loss excitonic circuits, the study of bosonic transport in one-dimensional channels, and custom potential energy landscapes for excitons in van der Waals heterostructures.

2.
Nano Lett ; 21(13): 5641-5647, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34164985

RESUMO

For quantum technologies based on single excitons and spins, the deterministic placement and control of a single exciton is a longstanding goal. MoSe2-WSe2 heterostructures host spatially indirect interlayer excitons (IXs) that exhibit highly tunable energies and unique spin-valley physics, making them promising candidates for quantum information processing. Previous IX trapping approaches involving moiré superlattices and nanopillars do not meet the quantum technology requirements of deterministic placement and energy tunability. Here, we use a nanopatterned graphene gate to create a sharply varying electric field in close proximity to a MoSe2-WSe2 heterostructure. The dipole interaction between the IX and the electric field creates an ∼20 nm trap. The trapped IXs show the predicted electric-field-dependent energy, saturation at low excitation power, and increased lifetime, all signatures of strong spatial confinement. The demonstrated architecture is a crucial step toward the deterministic trapping of single IXs, which has broad applications to scalable quantum technologies.

3.
Nat Commun ; 13(1): 6216, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266309

RESUMO

Spectrally narrow optical resonances can be used to generate slow light, i.e., a large reduction in the group velocity. In a previous work, we developed hybrid 2D semiconductor plasmonic structures, which consist of propagating optical frequency surface-plasmon polaritons interacting with excitons in a semiconductor monolayer. Here, we use coupled exciton-surface plasmon polaritons (E-SPPs) in monolayer WSe2 to demonstrate slow light with a 1300 fold decrease of the SPP group velocity. Specifically, we use a high resolution two-color laser technique where the nonlinear E-SPP response gives rise to ultra-narrow coherent population oscillation (CPO) resonances, resulting in a group velocity on order of 105 m/s. Our work paves the way toward on-chip actively switched delay lines and optical buffers that utilize 2D semiconductors as active elements.

4.
Nat Commun ; 13(1): 5354, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097165

RESUMO

Interlayer excitons (IXs) in MoSe2-WSe2 heterobilayers have generated interest as highly tunable light emitters in transition metal dichalcogenide (TMD) heterostructures. Previous reports of spectrally narrow (<1 meV) photoluminescence (PL) emission lines at low temperature have been attributed to IXs localized by the moiré potential between the TMD layers. We show that spectrally narrow IX PL lines are present even when the moiré potential is suppressed by inserting a bilayer hexagonal boron nitride (hBN) spacer between the TMD layers. We compare the doping, electric field, magnetic field, and temperature dependence of IXs in a directly contacted MoSe2-WSe2 region to those in a region separated by bilayer hBN. The doping, electric field, and temperature dependence of the narrow IX lines are similar for both regions, but their excitonic g-factors have opposite signs, indicating that the origin of narrow IX PL is not the moiré potential.

5.
ACS Appl Mater Interfaces ; 13(8): 10594-10602, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617715

RESUMO

We report the fabrication of hexagonal-boron-nitride (hBN) encapsulated multiterminal WSe2 Hall bars with 2D/2D low-temperature Ohmic contacts as a platform for investigating the two-dimensional (2D) metal-insulator transition. We demonstrate that the WSe2 devices exhibit Ohmic behavior down to 0.25 K and at low enough excitation voltages to avoid current-heating effects. Additionally, the high-quality hBN-encapsulated WSe2 devices in ideal Hall-bar geometry enable us to accurately determine the carrier density. Measurements of the temperature (T) and density (ns) dependence of the conductivity σ(T, ns) demonstrate scaling behavior consistent with a metal-insulator quantum phase transition driven by electron-electron interactions but where disorder-induced local magnetic moments are also present. Our findings pave the way for further studies of the fundamental quantum mechanical properties of 2D transition metal dichalcogenides using the same contact engineering.

6.
Nat Commun ; 10(1): 3264, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332203

RESUMO

A plasmonic modulator is a device that controls the amplitude or phase of propagating plasmons. In a pure plasmonic modulator, the presence or absence of a plasmonic pump wave controls the amplitude of a plasmonic probe wave through a channel. This control has to be mediated by an interaction between disparate plasmonic waves, typically requiring the integration of a nonlinear material. In this work, we demonstrate a 2D semiconductor nonlinear plasmonic modulator based on a WSe2 monolayer integrated on top of a lithographically defined metallic waveguide. We utilize the strong interaction between the surface plasmon polaritons (SPPs) and excitons in the WSe2 to give a 73 % change in transmission through the device. We demonstrate control of the propagating SPPs using both optical and SPP pumps, realizing a 2D semiconductor nonlinear plasmonic modulator, with an ultrafast response time of 290 fs.

7.
ACS Appl Mater Interfaces ; 10(42): 36540-36548, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30256093

RESUMO

Atmospheric and long-term aging effects on electrical properties of WSe2 transistors with various thicknesses are examined. Although countless published studies report electrical properties of transition-metal dichalcogenide materials, many are not attentive to testing environment or to age of samples, which we have found significantly impacts results. Our as-fabricated exfoliated WSe2 pristine devices are predominantly n-type, which is attributed to selenium vacancies. Transfer characteristics of as-fabricated devices measured in air then vacuum reveal physisorbed atmospheric molecules significantly reduced n-type conduction in air. First-principles calculations suggest this short-term reversible atmospheric effect can be attributed primarily to physisorbed H2O on pristine WSe2, which is easily removed from the pristine surface in vacuum due to the low adsorption energy. Devices aged in air for over 300 h demonstrate irreversibly increased p-type conduction and decreased n-type conduction. Additionally, they develop an extended time constant for recovery of the atmospheric adsorbents effect. Short-term atmospheric aging (up to approximately 900 h) is attributed to O2 and H2O molecules physisorbed to selenium vacancies where electron transfer from the bulk and adsorbed binding energies are higher than the H2O-pristine WSe2. The residual/permanent aging component is attributed to electron trapping molecular O2 and isoelectronic O chemisorption at selenium vacancies, which also passivates the near-conduction band gap state, p-doping the material, with very high binding energy. All effects demonstrated have the expected thickness dependence, namely, thinner devices are more sensitive to atmospheric and long-term aging effects.

8.
Sci Rep ; 6: 27276, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27263472

RESUMO

Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA