Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Vet Entomol ; 36(2): 168-175, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35015299

RESUMO

Optimal rearing conditions, inclusive of larval rearing density, are critical for sustained mosquito productivity. There is limited information on favourable conditions for the larval rearing of Anopheles funestus, the dominant malaria vector in east and southern Africa. This work investigated the effects of larval rearing densities and additional anchoring surface on An. funestus development using a life table approach. Larval cohorts were reared at four different larval densities using the same rearing surface area, larval food concentrations and temperature conditions. Rearing larvae at high densities extended the larval developmental time and reduced adult productivity. Adding an extra larval anchoring surface when rearing larvae at high density resulted in extended larval developmental time, increased larval survivorship and produced bigger adults. These findings improve our understanding of the relationship between larval density and developmental traits in An. funestus and provides baseline information for An. funestus rearing under laboratory conditions.


Assuntos
Anopheles , Características de História de Vida , Malária , Animais , Larva , Malária/veterinária , Mosquitos Vetores
2.
J Vector Ecol ; 46(1): 24-29, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229578

RESUMO

The colonization of the African malaria vector Anopheles funestus has been hampered by inadequate knowledge of its mating and development under laboratory conditions. Life-tables are routinely used to provide baseline biological characteristics needed for colonization. This study characterized age-specific life-table attributes of an existing An. funestus laboratory strain to gain insight into factors that are critical for its colonization. To achieve this, the An. funestus laboratory strain was reared from eggs to adulthood under standard insectary conditions, monitoring and characterizing each developmental stage. The mean insemination rate of females was 74.8% with an average egg load of 67.1 eggs/female and a mean fertility of 86.7%. The mean developmental time from 1st instar larvae (L1) to pupation was 16.4 days. The mean proportion of L1 that survived to pupation was 72.9%. On average, 78.8% of the pupae successfully eclosed as adults. The median longevity for adult males and females was 44 and 28 days, respectively. This work constitutes the first report on life-table characterization of an An. funestus strain. The larval developmental time was within the range reported for wild An. funestus while adult longevity was higher compared to survivorship observed in wild populations. These data demonstrate that the colonized An. funestus strain has potential to be re-colonized under standard insectary conditions. The study provides base-line information for further studies on identifying critical parameters for the maintenance of An. funestus under artificial conditions.


Assuntos
Anopheles , Malária , Animais , Feminino , Larva , Masculino , Mosquitos Vetores , Pupa
3.
Parasit Vectors ; 9: 110, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26920365

RESUMO

BACKGROUND: Anopheles funestus is a major vector of malaria in sub-Saharan Africa. In order to apply effective control measures against this vector, it is necessary to understand the underlying physiological factors that play a critical role in its development, reproduction, fertility and susceptibility to insecticides. One enzyme family involved in the above mentioned biological pathways is the esterases. The aim of this study was to analyse esterase activity levels at different ages during the life-span of adult Anopheles funestus Giles in order to better understand the complex biological processes in this species. METHODS: Isoenzyme electrophoresis (IEE) was used to examine the esterase activity in laboratory colonised An. funestus adults aged between 2 h (h) and 30 days post eclosion as well as in wild An. funestus adults aged between 2 h and 15 days post eclosion. Esterase activity was quantified by densitometry analysis of the IEE gels. Esterases were classified according to their activity inhibition by organic phosphates, eserine sulphate and sulphydryl reagents. RESULTS: Nine esterases IEE profiles were common to both the laboratory colonised and wild An. funestus adults. These esterases were further divided into acetylesterases, arylesterases, carboxylesterases and acetylcholinesterase. The activity level of certain specific esterases was primarily influenced by age and/or gender. CONCLUSIONS: The information from this study contributes towards the general understanding of esterase enzyme activity variation in adults of a major malaria vector An. funestus. This variation likely carries physiological and adaptive significance and may influence specific characteristics, such as reproductive fitness and insecticide resistance that are epidemiologically important.


Assuntos
Anopheles/enzimologia , Esterases/análise , Insetos Vetores , Animais , Densitometria , Eletroforese , Inibidores Enzimáticos/metabolismo , Esterases/classificação , Isoenzimas/análise , Isoenzimas/classificação
4.
Acta Trop ; 132 Suppl: S20-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23932945

RESUMO

Anopheles funestus is a major malaria vector in Africa. Insecticide resistance has developed in populations of this species in several African countries, prompting the need to develop additional vector control methods such as the sterile insect technique (SIT). This technique requires an understanding of those underlying physiological events that lead to sexual maturity of An. funestus males, the rotation of their genitalia in particular. The aim of this study was to qualitatively and quantitatively describe genital rotation in An. funestus males as it is an essential function of sexual maturation. Genital rotation of all the males reached its final rotation stage (135-180° rotation) 36 h post emergence at 23 ± 1 °C in laboratory colonised An. funestus males. These males had a comparable rotation rate to wild caught An. funestus at the same temperature setting. A temperature change (either 18 ± 1 °C or 29 ± 1 °C versus 23 ± 1 °C) significantly influenced the genital rotation rate such that this rate increased with increasing temperature. This information enhances our knowledge of the An. funestus male biology. This is important in terms of applying the sterile insect technique as the understanding and manipulation of the rate of sexual maturation in males has implications for the timing of sterile male release.


Assuntos
Anopheles/fisiologia , Genitália/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Genitália/crescimento & desenvolvimento , Masculino , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA