RESUMO
Retinitis pigmentosa (RP) encompasses a diverse range of hereditary, degenerative retinal ailments, presenting notable obstacles to molecular genetic diagnoses due to the intricate array of variants in different genes involved. This study enrolled 21 probands and their families who have been diagnosed with nonsyndromic RP but without a previous molecular diagnosis. We employed whole-exome sequencing (WES) to detect possible harmful gene variations in individuals with unknown-cause RP at the molecular level. WES allowed the identification of ten potential disease-causing variants in eight different genes. In 8 out of the total 21 patients, this method successfully identified the underlying molecular causes, such as putative pathogenic variants in genes including CRB1, KLHL7, PDE6B, RDH12, RP1, RPE65, USH2A, and RHO. A novel variant was identified in one of these genes, specifically PDE6B, providing valuable information on prospective targets for future enhanced gene therapeutic approaches.
RESUMO
BACKGROUND AND AIMS: Elevated serum ferritin is associated with incident Type 2 diabetes (T2D), but the interactions between serum ferritin and genetic factors which may improve understanding underlying mechanism in the development of T2D are still unclear. We determined the gene-ferritin interactions on the development of T2D by genome-wide gene-ferritin interaction analyses. METHODS AND RESULTS: A total of 3405 participants from two prospective cohorts of community living residents were included, and the median follow-time was 3.99 years. Genome-wide gene-ferritin interactions were analyzed using the joint test with two degrees of freedom and the interaction test with one degree of freedom. There were 18 SNPs selected in the joint test. Finally, four independent variants [rs355140 (LINC00312), rs4075576 (nearby PDGFA), rs1332202 (PTPRD), and rs713157 (nearby LINC00900)] with low pairwise linkage disequilibrium (r2<0.2) and located at least 1000 kb from the index SNP showed interactions with serum ferritin level. In the association analyses between serum ferritin levels (tertiles of ferritin and ferritin status) and the incidence of T2D according to genotype, the Incidence Rate Ratios (IRRs) in the highest tertile of ferritin level (vs. the lowest tertile) were greater for participants with heterozygotes of risk alleles of each of the four SNP than IRRs for those with wild type. Compared with the normal group, the elevated ferritin group also had a higher risk of T2D for all genetic variants of risk alleles, particularly its homozygotes. CONCLUSION: Serum ferritin level interacts with genetic variants (rs355140, rs4075576, rs1332202, and rs713157) in the development of T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Ferritinas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Fatores de RiscoRESUMO
Only limited information is available on the inter-relationships between genetic and non-genetic factors such as diet and sunlight exposure with serum 25-hydroxyvitamin D [25(OH)D] concentration. This cross-sectional study aimed to examine the independent and interactive associations of season, dietary vitamin D intake, and SNPs of 11 vitamin D-related candidate genes with serum 25(OH)D concentration among 2,721 adults aged ≥40 years at baseline from the Yangpyeong cohort, a part of the Korean Genome Epidemiology Study (KoGES). The interactions between season or dietary vitamin D and 556 SNPs were evaluated using 2-degree of freedom joint tests. Season was strongly (pdifference = 1.00 × 10-12) and dietary vitamin D intake was slightly but significantly associated with serum 25(OH)D concentration (pdifference = 0.0119). Among five SNPs (rs11723621-GC, rs7041-GC, rs10500804-CYP2R1, rs7129781-CYP2R1, and rs2852853-DHCR7) identified in the screening steps, only one, rs10500804-CYP2R1, significantly interacted with season (pinteraction = 8.01 × 10-5). The inverse association between number of minor alleles of rs10500804-CYP2R1 and concentration of 25(OH)D was significant only in summer/fall. Conversely, dietary vitamin D intake was positively associated only in winter/spring. In conclusion, season, dietary vitamin D intake, and four SNPs in GC, CYP2R1, and DHCR7 are independently and rs10500804-CYP2R1 is interactively associated with serum 25(OH)D concentration. Serum 25(OH)D is influenced by genotype of rs10500804-CYP2R1 in summer/fall when sunlight exposure is high, while dietary vitamin D intake is an important determinant of serum 25(OH)D during the seasons with low cutaneous vitamin D synthesis.
Assuntos
Dieta , Polimorfismo de Nucleotídeo Único , Estações do Ano , Vitamina D/análogos & derivados , Adulto , Alelos , Estudos de Associação Genética , Genoma , Genótipo , Humanos , Pessoa de Meia-Idade , República da Coreia , Vitamina D/sangueRESUMO
TREM2 is among the most well-known Alzheimer's disease (AD) risk genes; however, the functional roles of its AD-associated variants remain to be elucidated, and most known risk alleles are low-frequency variants whose investigation is challenging. Here, we utilized a splicing-guided aggregation method in which multiple low-frequency TREM2 variants were bundled together to investigate the functional impact of those variants on alternative splicing in AD. We analyzed whole genome sequencing (WGS) and RNA-seq data generated from cognitively normal elderly controls (CN) and AD patients in two independent cohorts, representing three regions in the frontal lobe of the human brain: the dorsolateral prefrontal cortex (CN = 213 and AD = 376), frontal pole (CN = 72 and AD = 175), and inferior frontal (CN = 63 and AD = 157). We observed an exon skipping event in the second exon of TREM2, with that exon tending to be more frequently skipped (p = 0.0012) in individuals having at least one low-frequency variant that caused loss-of-function for a splicing regulatory element. In addition, genes differentially expressed between AD patients with high vs. low skipping of the second exon (i.e., loss of a TREM2 functional domain) were significantly enriched in immune-related pathways. Our splicing-guided aggregation method thus provides new insight into the regulation of alternative splicing of the second exon of TREM2 by low-frequency variants and could be a useful tool for further exploring the potential molecular mechanisms of multiple, disease-associated, low-frequency variants.
Assuntos
Processamento Alternativo/genética , Doença de Alzheimer/genética , Predisposição Genética para Doença , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Éxons/genética , Feminino , Frequência do Gene/genética , Variação Genética/genética , Humanos , Masculino , Splicing de RNA/genética , RNA-Seq , Sequências Reguladoras de Ácido Nucleico/genética , Sequenciamento Completo do GenomaRESUMO
Necrotizing enterocolitis (NEC) characterized by inflammatory intestinal necrosis is a major cause of mortality and morbidity in newborns. Deep RNA sequencing (RNA-Seq) has recently emerged as a powerful technology enabling better quantification of gene expression than microarrays with a lower background signal. A total of 10 transcriptomes from 5 pairs of NEC lesions and adjacent normal tissues obtained from preterm infants with NEC were analyzed. As a result, a total of 65 genes (57 down-regulated and 8 up-regulated) revealed significantly different expression levels in the NEC lesion compared to the adjacent normal region, based on a significance at fold change ≥ 1.5 and P ≤ 0.05. The most significant gene, DPF3 (P < 0.001), has recently been reported to have differential expressions in colon segments. Our gene ontology analysis between NEC lesion and adjacent normal tissues showed that down-regulated genes were included in nervous system development with the most significance (P = 9.3 × 10â»7; P(corr) = 0.0003). In further pathway analysis using Pathway Express based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, genes involved in thyroid cancer and axon guidance were predicted to be associated with different expression (P(corr) = 0.008 and 0.020, respectively). Although further replications using a larger sample size and functional evaluations are needed, our results suggest that altered gene expression and the genes' involved functional pathways and categories may provide insight into NEC development and aid in future research.
Assuntos
Enterocolite Necrosante/patologia , RNA/metabolismo , Transcriptoma , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Enterocolite Necrosante/genética , Idade Gestacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Prematuro , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Projetos Piloto , RNA/química , RNA/isolamento & purificação , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para CimaRESUMO
The human microbiome is one of the key factors affecting the host immune system and metabolic functions that are not encoded in the human genome. Culture-independent analysis of the human microbiome using metagenomics approach allows us to investigate the compositions and functions of the human microbiome. Computational methods analyze the microbial community by using specific marker genes or by using shotgun sequencing of the entire microbial community. Taxonomy profiling is conducted by using the reference sequences or by de novo clustering of the specific region of sequences. Functional profiling, which is mainly based on the sequence similarity, is more challenging since about half of ORFs predicted in the metagenomic data could not find homology with known protein families. This review examines computational methods that are valuable for the analysis of human microbiome, and highlights the results of several large-scale human microbiome studies. It is becoming increasingly evident that dysbiosis of the gut microbiome is strongly associated with the development of immune disorder and metabolic dysfunction.
Assuntos
Biologia Computacional/métodos , Microbiota/genética , DNA Bacteriano/química , HumanosRESUMO
PURPOSE: Hirschsprung disease (HSCR) is a congenital and heterogeneous disorder, which is caused by no neuronal ganglion cells in part or all of distal gastrointestinal tract. Recently, our genome-wide association study has identified solute carrier family 6, proline IMINO transporter, member 20 (SLC6A20) as one of the potential risk factors for HSCR development. This study performed a replication study for the association of SLC6A20 polymorphisms with HSCR and an extended analysis to investigate further associations for subgroups and haplotypes. METHODS: For the replication study, a total of 40 single nucleotide polymorphisms (SNPs) of SLC6A20 were genotyped in 187 HSCR subjects composed of 121 short-segment HSCR, 45 long-segment HSCR (L-HSCR), 21 total colonic aganglionosis, and 283 unaffected controls. Imputation was performed using genotype data from our genome-wide association study and this replication study. RESULTS: Imputed meta-analysis revealed that 13 SLC6A20 SNPs (minimum P = 0.0002 at rs6770261) were significantly associated with HSCR even after correction for multiple comparisons using false discovery rate (FDR) (minimum PFDR =â .005). In further subgroup analysis, SLC6A20 polymorphisms appeared to have increased associations with L-HSCR. Moreover, haplotype analysis also showed significant associations between 2 haplotypes (BL3_ht2 and BL4_ht2) and HSCR susceptibility (PFDR <â .05). CONCLUSIONS: Although further replications and functional evaluations are required, our results suggest that SLC6A20 may have roles in HSCR development and in the extent of aganglionic segment during enteric nervous system development.
Assuntos
Replicação do DNA , Doença de Hirschsprung/genética , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , MasculinoRESUMO
Microsatellite-unstable (MSI) cancers have distinct genetic and clinical features from microsatellite-stable cancers, but the molecular functional differences between MSI cancers originating from different tissues or organs have not been well studied because the application of usual differentially expressed gene (DEG) analysis is error-prone, producing too many noncancer-specific normally functioning genes. To maximize therapeutic efficacy, biomarkers reflecting cancer-specific differences between MSI cancers of different tissue origins should be identified. To identify functional differences between MSI colon and endometrial cancers, we combined DEG analysis and biclustering instead of DEG analysis alone and refined functionally relevant biclusters reflecting genuine functional differences between the 2 tumors. Specifically, using The Cancer Genome Atlas and genome-tissue expression as data sources, gene ontology (GO) enrichment tests were performed after routinely identifying DEGs between the 2 tumors with the exclusion of DEGs identified in their normal counterparts. Cancer-specific biclusters and associated enriched GO terms were obtained by biclustering with enrichment tests for the preferences for cancer type (either colon or endometrium) and GO enrichment tests for each cancer-specific bicluster, respectively. A novel childness score was developed to select functionally relevant biclusters among cancer-specific biclusters based on the extent to which the enriched GO terms of the biclusters tended to be child terms of the enriched GO terms in DEGs. The selected biclusters were tested using survival analysis to validate their clinical significance. We performed multiple sequential analyses to produce functionally relevant biclusters from the RNA sequencing data of MSI colon and endometrial cancer samples and their normal counterparts. We identified 3066 cancer-specific DEGs. Biclustering analysis revealed 153 biclusters and 41 cancer-specific biclusters were selected using Fisher exact test. A mean childness score over 0.6 was applied as the threshold and yielded 8 functionally relevant biclusters from cancer-specific biclusters. Functional differences appear to include gland cavitation and the TGF-ß receptor, G protein, and cytokine pathways. In the survival analysis, 6 of the 8 functionally relevant biclusters were statistically significant. By attenuating noise and applying a synergistic contribution of DEG results, we refined candidate biomarkers to complement tissue-specific features of MSI tumors.
Assuntos
Neoplasias do Endométrio , Feminino , Criança , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Repetições de Microssatélites , Colo/patologia , Perfilação da Expressão Gênica/métodos , AlgoritmosRESUMO
BACKGROUND: Retinitis pigmentosa (RP) is an inherited disorder that causes progressive loss of vision. This study aimed to describe the possible causative variants of the USH2A gene in Korean RP families and their associated phenotypes. MATERIALS AND METHODS: We recruited 94 RP families (220 subjects, including 94 probands and 126 family members) in a Korean cohort, and analyzed USH2A gene variants through whole-exome sequencing. The pathogenicity of the variants was classified according to American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines. RESULTS: We found 14 USH2A disease-causing variants, including 5 novel variants. Disease causing variants were identified in 10 probands with RP, accounting for 10.6% (10/94) of the Korean RPs in the cohort. To visually represent the structural changes induced by novel variants, we modeled the three-dimensional structures of the wild-type and mutant proteins. CONCLUSIONS: This study expands the spectrum of USH2A variants and provides information for future therapeutic strategies for RP.
Assuntos
Retinose Pigmentar , Humanos , Sequenciamento do Exoma , Mutação , Análise Mutacional de DNA , Linhagem , Retinose Pigmentar/genética , República da Coreia/epidemiologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/químicaRESUMO
Height is a highly heritable trait that involves multiple genetic loci. To identify causal variants that influence stature, we sequenced whole exomes of four children with idiopathic short stature. Ninety-five nonsynonymous single-nucleotide polymorphisms (nsSNPs) were selected as potential candidate variants. We performed association analysis in 740 cohort individuals and identified 11 nsSNPs in 10 loci (DIS3L2, ZBTB38, FAM154A, PTCH1, TSSC4, KIF18A, GPR133, ACAN, FAM59A, and NINL) associated with adult height (P < 0.05), including five novel loci. Of these, two nsSNPs (TSSC4 and KIF18A loci) were significant at P < 0.05 in the replication study (n = 1,000) and five (ZBTB38, FAM154A, TSSC4, KIF18A, and FAM59A loci) were significant at P < 0.01 in the combined analysis (n = 1,740). Together, the five nsSNPs accounted for approximately 2.5% of the height variation. This study demonstrated the utility of next-generation sequencing in identifying genetic variants and loci associated with complex traits.
Assuntos
Estatura/genética , Exoma , Polimorfismo de Nucleotídeo Único , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Transtornos do Crescimento/genética , Humanos , Coreia (Geográfico) , Masculino , Análise de Sequência de DNARESUMO
PURPOSE: Previous neuroimaging studies provide growing evidence that patients with juvenile myoclonic epilepsy (JME) have both structural and functional abnormalities of the thalamus and frontal lobe gray matter. However, limited data are available regarding the issue of white matter (WM) involvement, making the microstructural WM changes in JME largely unknown. In the present study we investigated changes of WM integrity in patients with JME, and their relationships with cognitive functions and epilepsy-specific clinical factors. METHODS: We performed diffusion tensor imaging (DTI) and neuropsychological assessment in 25 patients with JME and 30 control subjects matched for age, gender, and education level. Between-group comparisons of fractional anisotropy (FA) and mean diffusivity (MD) were carried out in a whole-brain voxel-wise manner by using tract-based spatial statistics (TBSS). In addition, both FA and MD were correlated with cognitive performance and epilepsy-specific clinical variables to investigate the influence of these clinical and cognitive factors on WM integrity changes. KEY FINDINGS: Neuropsychological evaluation revealed that patients with JME had poorer performance than control subjects on most of the frontal function tests. TBSS demonstrated that, compared to controls, patients with JME had significantly reduced FA and increased MD in bilateral anterior and superior corona radiata, genu and body of corpus callosum, and multiple frontal WM tracts. Disease severity, as assessed by the number of generalized tonic-clonic seizures in given years, was negatively correlated with FA and positively correlated with MD extracted from regions of significant differences between patients and controls in TBSS. SIGNIFICANCE: Our findings of widespread disturbance of microstructural WM integrity in the frontal lobe and corpus callosum that interconnects frontal cortices could further support the pathophysiologic hypothesis of thalamofrontal network abnormality in JME. These WM abnormalities may implicate frontal cognitive dysfunctions and disease progression in JME.
Assuntos
Transtornos Cognitivos/patologia , Lobo Frontal/patologia , Epilepsia Mioclônica Juvenil/patologia , Adolescente , Adulto , Anisotropia , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Epilepsia Mioclônica Juvenil/complicações , Neuroimagem , Testes Neuropsicológicos , Adulto JovemRESUMO
PURPOSE: Alzheimer disease (AD) is one of the most complex diseases and is characterized by AD-related neuropathological features, including accumulation of amyloid-ß plaques and tau neurofibrillary tangles. Dysregulation of alternative splicing (AS) contributes to these features, and there is heterogeneity in features across brain regions between AD patients, leading to different severity and progression rates; however, brain region-specific AS mechanisms still remain unclear. Therefore, we aimed to systemically investigate AS in multiple brain regions of AD patients and how they affect clinical features. METHODS: We analyzed RNA sequencing (RNA-Seq) data obtained from brain regions (frontal and temporal) of AD patients. Reads were mapped to the hg19 reference genome using the STAR aligner, and exon skipping (ES) rates were estimated as percent spliced in (PSI) by rMATs. We focused on AD-risk genes discovered by genome-wide association studies, and accordingly evaluated associations between PSI of skipped exons in AD-risk genes and Braak stage and plaque density mean (PM) for each brain region. We also integrated whole-genome sequencing data of the ascertained samples with RNA-Seq data to identify genetic regulators of feature-associated ES. RESULTS: We identified 26 and 41 ES associated with Braak stage in frontal and temporal regions, respectively, and 10 and 50 ES associated with PM. Among those, 10 were frontal-specific (CLU and NTRK2), 65 temporal-specific (HIF1A and TRPC4AP), and 26 shared ES (APP) that accompanied functional Gene Ontology terms, including axonogenesis in shared-ES genes. We further identified genetic regulators that account for 44 ES (44% of the total). Finally, we present as a case study the systematic regulation of an ES in APP, which is important in AD pathogenesis. CONCLUSION: This study provides new insights into brain region-dependent AS regulation of the architecture of AD-risk genes that contributes to AD pathologies, ultimately allowing identification of a treatment target and region-specific biomarkers for AD.
RESUMO
The RecA homolog, E. coli (S. cerevisiae) (RAD51) may modulate hepatitis B virus (HBV) infection by maintaining genome integrity and mediating homologous DNA repairs. In this study, 16 sequence variations were detected by resequencing all exons, the exon-intron boundary, and promoter regions of the human RAD51 gene in DNA samples of 24 unrelated individuals. To investigate the association of common variations in the RAD51 locus with HBV infection and hepatocellular carcinoma (HCC) occurrence, six common polymorphisms were genotyped in a total of 1,103 Korean HBV cohort, composed of 433 spontaneously recovered patients as controls and 670 chronic carriers of HBV, who were stratified further into 327 cirrhosis/chronic hepatitis patients and 343 patients with HCC infected with HBV. Logistic analyses revealed no significant association of RAD51 polymorphisms and haplotypes with HBV clearance and HCC occurrence (P > 0.05). Furthermore, with age of infection as an important factor in disease progression to HCC, results from the Cox proportional hazards analysis showed no significant associations between any of the tested RAD51 variants and the age of onset of HCC (P > 0.05), suggesting that genetic polymorphisms of RAD51 may not play an important role in clearance of HBV and disease progression to HCC. Although studies in other populations are needed to confirm these findings, this preliminary data may contribute to the current knowledge on the pathogenesis of hepatitis.
Assuntos
Carcinoma Hepatocelular/genética , Predisposição Genética para Doença , Hepatite B/genética , Polimorfismo de Nucleotídeo Único , Rad51 Recombinase/genética , Adulto , Idoso , Povo Asiático , Estudos de Coortes , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Schizophrenia is a multifactorial disorder and smooth pursuit eye movement (SPEM) disturbance is proposed as one of the most consistent neurophysiological endophenotype in schizophrenia. The aim of this study was to examine the genetic association of RANBP1 polymorphisms with the risk of schizophrenia and with the risk of SPEM abnormality in schizophrenia patients in a Korean population. Two SNPs of RANBP1 were genotyped by TaqMan assay. Their genetic effect of single/haplotype polymorphisms on the risk of schizophrenia and SPEM abnormality from 354 patients and 396 controls were performed using χ² and multiple regression analyses. Although no RANBP1 polymorphisms were associated with the risk of schizophrenia, a common haplotype, RANBP1-ht2 (rs2238798G-rs175162T), showed significant association with the risk of SPEM abnormality among schizophrenia patients after multiple correction (P(corr) = 0.002-0.0003). The results of present study provide the evidence that RANBP1 on 22q11.21 locus might be causally related to the SPEM abnormality rather than the development of schizophrenia.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos/genética , Proteínas Nucleares/genética , Acompanhamento Ocular Uniforme/genética , Adulto , Idoso , Povo Asiático/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão , República da Coreia , Fatores de Risco , Esquizofrenia/complicações , Esquizofrenia/genética , Adulto JovemRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder and is represented by complicated biological mechanisms and complexity of brain tissue. Our understanding of the complicated molecular architecture that contributes to AD progression benefits from performing comprehensive and systemic investigations with multi-layered molecular and biological data from different brain regions. Since recently different independent studies generated various omics data in different brain regions of AD patients, multi-omics data integration can be a useful resource for better comprehensive understanding of AD. Here we present a web platform, ADAS-viewer, that provides researchers with the ability to comprehensively investigate and visualize multi-omics data from multiple brain regions of AD patients. ADAS-viewer offers means to identify functional changes in transcript and exon expression (i.e., alternative splicing) along with associated genetic or epigenetic regulatory effects. Specifically, it integrates genomic, transcriptomic, methylation, and miRNA data collected from seven different brain regions (cerebellum, temporal cortex, dorsolateral prefrontal cortex, frontal pole, inferior frontal gyrus, parahippocampal gyrus, and superior temporal gyrus) across three independent cohort datasets. ADAS-viewer is particularly useful as a web-based application for analyzing and visualizing multi-omics data across multiple brain regions at both transcript and exon level, allowing the identification of candidate biomarkers of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Encéfalo , Córtex Pré-Frontal Dorsolateral , Genômica , Humanos , InternetRESUMO
Premature ovarian failure (POF) is a complex disease of which the etiology is influenced by numerous genetic variations. Several POF candidate genes have been reported. However, no causal genes with high odds ratio (OR) have yet been discovered. This study included 564 females of Korean ethnicity, comprising 60 patients with POF and 182 controls in the discovery set and 105 patients with POF and 217 controls in the replication set. We conducted genome-wide association analysis to search for novel candidate genes predicted to influence POF development using Axiom Precision Medicine Research Arrays and additive model logistic regression analysis. One statistically significant single nucleotide polymorphism (SNP), rs55941146, which encodes a missense alteration (Val > Gly) in the APBA3 gene, was identified with OR values for association with POF of 13.33 and 4.628 in the discovery and replication sets, respectively. No rs55941146 minor allele homozygotes were present in either cases or controls. The APBA3 protein binds FIH-1 that inhibits hypoxia inducible factor-1α (HIF-1α). HIF-1α contributes to granulosa cell proliferation, which is crucial for ovarian follicle growth, by regulating cell proliferation factors and follicle stimulating hormone-mediated autophagy. Our data demonstrate that APBA3 is a candidate novel causal gene for POF.
RESUMO
While studies aimed at detecting and analyzing indels or single nucleotide polymorphisms within human genomic sequences have been actively conducted, studies on detecting long insertions/deletions are not easy to orchestrate. For the last 10 years, the availability of long read data of human genomes from PacBio or Nanopore platforms has increased, which makes it easier to detect long insertions/deletions. However, because long read data have a critical disadvantage due to their relatively high cost, many next generation sequencing data are produced mainly by short read sequencing machines. Here, we constructed programs to detect so-called unmapped regions (UMRs, where no reads are mapped on the reference genome), scanned 40 Korean genomes to select UMR long deletion candidates, and compared the candidates with the long deletion break points within the genomes available from the 1000 Genomes Project (1KGP). An average of about 36,000 UMRs were found in the 40 Korean genomes tested, 284 UMRs were common across the 40 genomes, and a total of 37,943 UMRs were found. Compared with the 74,045 break points provided by the 1KGP, 30,698 UMRs overlapped. As the number of compared samples increased from 1 to 40, the number of UMRs that overlapped with the break points also increased. This eventually reached a peak of 80.9% of the total UMRs found in this study. As the total number of overlapped UMRs could probably grow to encompass 74,045 break points with the inclusion of more Korean genomes, this approach could be practically useful for studies on long deletions utilizing short read data.
RESUMO
Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we analyzed the RNA-sequencing (RNA-Seq) datasets obtained for 18 days in two-day intervals from neonatal mouse calvarial pre-osteoblast-like cells. Over the course of osteoblast differentiation, 4058 mRNAs and 3948 lncRNAs were differentially expressed, and they were grouped into 12 clusters according to the expression pattern by fuzzy c-means clustering. Using weighted gene coexpression network analysis, we identified 9 modules related to the early differentiation stage (days 2-8) and 7 modules related to the late differentiation stage (days 10-18). Gene ontology and KEGG pathway enrichment analysis revealed that the mRNA and lncRNA upregulated in the late differentiation stage are highly associated with osteogenesis. We also identified 72 mRNA and 89 lncRNAs as potential markers including several novel markers for osteoblast differentiation and activation. Our findings provide a valuable resource for mouse lncRNA study and improves our understanding of the biology of osteoblastic differentiation in mice.
RESUMO
Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.
Assuntos
Microbiota , Oceanos e Mares , Fotossíntese , Salinidade , Estações do Ano , Synechococcus/fisiologia , Microbiologia da Água , Ecossistema , Genes Bacterianos , Óperon , Ficobilissomas/fisiologia , Filogenia , Synechococcus/classificação , Synechococcus/genéticaRESUMO
High-coverage whole-genome sequencing data of a single ethnicity can provide a useful catalogue of population-specific genetic variations, and provides a critical resource that can be used to more accurately identify pathogenic genetic variants. We report a comprehensive analysis of the Korean population, and present the Korean National Standard Reference Variome (KoVariome). As a part of the Korean Personal Genome Project (KPGP), we constructed the KoVariome database using 5.5 terabases of whole genome sequence data from 50 healthy Korean individuals in order to characterize the benign ethnicity-relevant genetic variation present in the Korean population. In total, KoVariome includes 12.7M single-nucleotide variants (SNVs), 1.7M short insertions and deletions (indels), 4K structural variations (SVs), and 3.6K copy number variations (CNVs). Among them, 2.4M (19%) SNVs and 0.4M (24%) indels were identified as novel. We also discovered selective enrichment of 3.8M SNVs and 0.5M indels in Korean individuals, which were used to filter out 1,271 coding-SNVs not originally removed from the 1,000 Genomes Project when prioritizing disease-causing variants. KoVariome health records were used to identify novel disease-causing variants in the Korean population, demonstrating the value of high-quality ethnic variation databases for the accurate interpretation of individual genomes and the precise characterization of genetic variations.