Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018511

RESUMO

The formation of phase separated membrane domains is believed to be essential for the function of the cell. The precise composition and physical properties of lipid bilayer domains play crucial roles in regulating protein activity and governing cellular processes. Perturbation of the domain structure in human cells can be related to neurodegenerative diseases and cancer. Lipid rafts are also believed to be essential in bacteria, potentially serving as targets for antibiotics. An important question is how the membrane domain structure is affected by bioactive and therapeutic molecules, such as surface-active peptides, which target cellular membranes. Here we focus on antimicrobial peptides (AMPs), crucial components of the innate immune system, to gain insights into their interaction with model lipid membranes containing domains. Using small-angle neutron/X-ray scattering (SANS/SAXS), we show that the addition of several natural AMPs (indolicidin, LL-37, magainin II, and aurein 2.2) causes substantial growth and restructuring of the domains, which corresponds to increased line tension. Contrast variation SANS and SAXS results demonstrate that the peptide inserts evenly in both phases, and the increased line tension can be related to preferential and concentration dependent thinning of the unsaturated membrane phase. We speculate that the lateral restructuring caused by the AMPs may have important consequences in affecting physiological functions of real cells. This work thus shines important light onto the complex interactions and lateral (re)organization in lipid membranes, which is relevant for a molecular understanding of diseases and the action of antibiotics.

2.
Langmuir ; 40(29): 14888-14899, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976366

RESUMO

An interesting evolution of the re-entrant interaction has been observed in an anionic silica nanoparticle (NP)-block copolymer (P85) dispersion due to mutually competing effects of temperature and polymer concentration. It has been demonstrated that a rise in the temperature leads to an evolution of attraction in the system, which interestingly diminishes on increasing the polymer concentration. Consequently, the system exhibits a re-entrant transition from repulsive to attractive and back to repulsive at a given temperature but with respect to the increasing polymer concentration, within a selected region of concentration and temperature. The intriguing observations have been elucidated based on the temperature/concentration-dependent modifications in the interactions governing the system, as probed by contrast-variation small-angle neutron scattering. The initial transition from the repulsive to attractive system is attributed to the temperature-driven enhancement in the hydrophobicity of the amphiphilic triblock copolymer (P85) adsorbed on nanoparticles. The strength and range of this attraction are found to be more than van der Waals attraction while relatively less than electrostatic interaction. At higher polymer concentrations, the saturation of polymer adsorption on nanoparticles introduces additional steric repulsion along with electrostatic interaction between their conjugates, effectively reducing the strength of the attraction. However, with a significant increase in temperature (>75 °C), the attraction again dominates the system, which eventually leads to the particle aggregation at all the measured polymer concentrations (>0.1 wt %). Our study provides useful inputs to develop smart NP-polymer composites having capabilities to respond to external stimuli such as temperature/concentration variation.

3.
Small ; 19(52): e2304387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37643398

RESUMO

Ferromagnetic ferrofluids are synthetic materials consisting of magnetic nanoplatelets dispersed in an isotropic fluid. Their main characteristics are the formation of stable magnetic domains and the presence of macroscopic magnetization even in the absence of a magnetic field. Here, the authors report on the experimental observation of spontaneous stripe formation in a ferromagnetic ferrofluid in the presence of an oscillating external magnetic field. The striped structure is identified as elongated magnetic domains, which exhibit reorientation upon reversal of the magnetic field. The stripes are oriented perpendicular to the magnetic field and are separated by alternating flow lanes. The velocity profile is measured using a space-time correlation technique that follows the motion of the thermally excited fluctuations in the sample. The highest velocities are found in the depleted regions between individual domains and reach values up to several µm s-1 . The fluid in adjacent lanes moves in the opposite directions despite the applied magnetic field being uniform. The formation of bidirectional flow lanes can be explained by alternating rotation of magnetic nanoparticles in neighboring stripes, which indicates spontaneous breaking of the chiral symmetry in the sample.

4.
Soft Matter ; 19(24): 4588-4598, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37310375

RESUMO

The co-assembly of three one-fold negatively charged 3-chloro-4-hydroxy-phenylazo dyes (Yellow, Blue and Red) with the cationic surfactant dodecyltrimethylammoniumbromide (DTAB) was studied to probe dye-DTAB binding stoichiometry and assembly morphology. For each dye, phase separation was observed above a given dye : DTAB ratio with the ratio depending on the dye. While Yellow and DTAB showed liquid/liquid phase separation above Yellow : DTAB = 1 : 1.67, crystalline dye-DTAB complexes were observed for Blue-DTAB and Red-DTAB above Blue : DTAB = 1 : 2.56 and Red : DTAB = 1 : 2.94 respecively. In homogeneous solution, UV/vis spectroscopic investigations suggest stochiometries of Yellow : DTAB = 1 : 2, Blue : DTAB = 1 : 3 and Red : DTAB = 1 : 4. It was concluded, that Yellow exhibits the highest dye : DTAB binding stoichiometry in both, dye-surfactant complexes in the 2-phase region and in solution, whereas the lowest dye : DTAB binding stoichiometry was observed for Red-DTAB in both cases. The observed stoichiometries are inversely correlated to the impact dye addition has on the morphology of DTAB micelles. Generally, addition of dye to DTAB micelles leads to a reduction in spontaneous curvature of these micelles and to the formation of triaxial ellipsoidal or cylindrical micelles from oblate ellipsoidal DTAB micelles. At a DTAB concentration of 30 mM and a dye concentration of 5 mM, this effect was most pronounced for Red and least pronounced for Yellow, whilst Blue showed an intermediate effect.

5.
Nucleic Acids Res ; 49(11): e63, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33677607

RESUMO

U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/química , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo
6.
Langmuir ; 38(17): 5226-5236, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166545

RESUMO

The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PiPOx239-g-PnPrOx14, features a relatively long poly(2-isopropenyl-2-oxazoline) (PiPOx) backbone and short poly(2-n-propyl-2-oxazoline) (PnPrOx) side chains. As a solvent, ethanol is used. By model fitting, the overall size and the persistence length as well as the interaction length and interaction strength are determined. At this, the interplay between form and structure factor is taken into account. The conformation of the molecular brush is traced upon increasing the solution concentration, and a rigid-to-flexible transition is found near the overlap concentration. Finally, the results of computer simulations of the molecular brush solutions confirm the experimental results.


Assuntos
Solventes , Simulação por Computador , Conformação Molecular , Solventes/química
7.
Phys Chem Chem Phys ; 24(36): 21740-21749, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093641

RESUMO

Polymer-mediated interactions play an important role in the stability of colloids and are therefore paramount for both fundamental as well as scientific interests. The stability of colloids in the presence of neutral polymers depends on several parameters such as the adsorbing/non-adsorbing nature, molecular weight, concentration and temperature, and such systems are well studied. However, the stability behaviour of charged colloids in the presence of charged polyelectrolyte involves complex interaction mechanisms and hence needs attention. The present work reports the study of the stability behaviour of negatively charged silica colloids in the presence of cationic polyethylenimine (PEI) polyelectrolyte using small-angle neutron and X-ray scattering. The intriguing non-monotonic stability behaviour of silica colloids is observed with varying concentrations of PEI. In the low and intermediate PEI concentration regimes, electrosorption of PEI on the silica colloids causes partial screening of charges, leading to aggregation of colloids. The DLVO interaction potential at low and intermediate concentrations of PEI exhibit a reduced repulsion barrier which is responsible for aggregation. In the high concentration regime, the entropic interaction between the free PEI molecules and PEI decorated silica colloids leads to depletion re-stabilization. The combination of DLVO potential and adsorbed PEI mediated enhanced depletion repulsion in the presence of free PEI gives rise to an increased repulsion barrier responsible for the re-stabilization at high PEI concentrations.

8.
Proc Natl Acad Sci U S A ; 116(51): 25516-25523, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792179

RESUMO

The interface between water and folded proteins is very complex. Proteins have "patchy" solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie's equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid-liquid work of adhesion (WSL ) and time-averaged structure of interfacial water. We find considerable differences in WSL , and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.

9.
Opt Express ; 29(11): 16153-16163, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154183

RESUMO

We experimentally demonstrate how to accurately retrieve the refractive index profile of photonic structures by standard diffraction experiments and use of the rigorous coupled-wave analysis in the multi-wave coupling regime, without the need for taking any auxiliary data. In particular, we show how the phases of the Fourier components of a periodic structure can be fully recovered by deliberately choosing a probe wavelength of the diffracting radiation much smaller than the lattice constant of the structure. In the course of our demonstration, we accurately determine the slight asymmetry of the structure of nanocomposite phase gratings by light and neutron diffraction measurements.

10.
Soft Matter ; 17(29): 6972-6984, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34236073

RESUMO

The interaction of a bovine serum albumin (BSA) protein with the mixture of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) has been investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). Both SDS and DTAB as individuals interact electrostatically as well as hydrophobically with BSA and form connected protein-decorated micelle like complexes in the aqueous solution, in which the well-defined surfactant micelles are organized along the randomly distributed unfolded polypeptide chain of the protein. The protein-surfactant interaction has been tuned by adding different molar mixtures of SDS and DTAB in BSA aqueous solution. It is found that a lower molar fraction of either surfactant in the protein-mixed surfactant complexes results in the formation of a connected protein-decorated micelle structure similar to those of pure surfactants. As the molar fraction of one of the surfactants in the mixture approaches the equimolar fraction, the structure formed by the protein-mixed surfactant is very different from the connected protein-decorated micelle like structure. Different microstructures of BSA-mixed surfactant complexes are formed, mostly governed by the structure of mixed surfactants arising from the strong electrostatic interaction of oppositely charged components. In this case, unfolded proteins wrap the structures of mixed surfactants around their surface. Along with the connected protein-decorated micelle like structure, rod-like and bilayer vesicles of protein-surfactant complexes are formed at different molar fractions of mixed surfactants.


Assuntos
Soroalbumina Bovina , Tensoativos , Animais , Ânions , Cátions , Bovinos , Humanos , Dodecilsulfato de Sódio
11.
Nature ; 527(7578): 349-52, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26581291

RESUMO

The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and allows, for example, the role of ultrastructure in the mechanical response of a biological tissue or manufactured material to be studied.


Assuntos
Nanoestruturas/ultraestrutura , Espalhamento a Baixo Ângulo , Tomografia/métodos , Idoso , Colágeno/ultraestrutura , Humanos , Imageamento Tridimensional/métodos , Masculino , Coluna Vertebral/ultraestrutura , Difração de Raios X
12.
Langmuir ; 35(34): 11210-11216, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31343180

RESUMO

Liposomes of specific artificial phospholipids, such as Pad-PC-Pad and Rad-PC-Rad, are mechanically responsive. They can release encapsulated therapeutics via physical stimuli, as naturally present in blood flow of constricted vessel segments. The question is how these synthetic liposomes change their structure in the medically relevant temperature range from 22 to 42 °C. In the present study, small-angle neutron scattering (SANS) was employed to evaluate the temperature-induced structural changes of selected artificial liposomes. For Rad-PC-Rad, Pad-Pad-PC, Sur-PC-Sur, and Sad-PC-Sad liposomes, the SANS data have remained constant because the phase transition temperatures are above 42 °C. For Pad-PC-Pad and Pes-PC-Pes liposomes, whose phase transitions are below 42 °C, the q-plots have revealed temperature-dependent structural changes. The average diameter of Pad-PC-Pad liposomes remained almost constant, whereas the eccentricity decreased by an order of magnitude. Related measurements using transmission electron microscopy at cryogenic temperatures, as well as dynamic light scattering before and after the heating cycles, underpin the fact that the non-spherical liposomes flatten out. The SANS data further indicated that, as a consequence of the thermal loop, the mean bilayer thickness increased by 20%, associated with the loss of lipid membrane interdigitation. Therefore, Pad-PC-Pad liposomes are unsuitable for local drug delivery in the atherosclerotic human blood vessel system. In contrast, Rad-PC-Rad liposomes are thermally stable for applications within the human body.


Assuntos
Temperatura Alta , Lipossomos/química , Difração de Nêutrons , Fosfolipídeos/química , Espalhamento a Baixo Ângulo
13.
Langmuir ; 35(11): 4117-4124, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30810320

RESUMO

Controlling the assembly of colloids in dispersion is a fundamental approach toward the production of functional materials. Nanocrystalline cellulose (NCC) is a charged nanoparticle whose colloidal interactions can be modulated from repulsive to attractive by increasing ionic strength. Here, we combine polarized optical microscopy, rheology, and small-angle scattering techniques to investigate (i) the concentration-driven transition from isotropic dispersion to cholesteric liquid crystals and (ii) salt-induced NCC phase transitions. In particular, we report on the formation of NCC attractive glasses containing nematic domains. At increasing NCC concentration, a structure peak was observed in small-angle X-ray scattering (SAXS) patterns. The evolution of the structure peak demonstrates the decrease in NCC interparticle distance, favoring orientational order during the isotropic-cholesteric phase transition. Small amounts of salt reduce the cholesteric volume fraction and pitch by a decrease in excluded volume. Beyond a critical salt concentration, NCC forms attractive glasses due to particle caging and reduced motility. This results in a sharp increase in viscosity and formation of viscoelastic glasses. The presence of nematic domains is suggested by the appearance of interference colors and the Cox-Merz rule failure and was confirmed by an anisotropic SAXS scattering pattern at q ranges associated with the presence of nematic domains. Thus, salt addition allows the formation of NCC attractive glasses with mechanical properties similar to those of gels while remaining optically active owed to entrapped nematic domains.

14.
Biomacromolecules ; 20(5): 2123-2134, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30908911

RESUMO

The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system. However, contrary to DLVO theory, the protein solution undergoes a reentrant phase transition from one-phase to a two-phase system and then back to the one-phase system in the presence of tri and tetravalent counterions. The results show that tri and tetravalent (unlike mono and divalent) counterions induce short-range attraction between the protein molecules, leading to the transformation from one-phase to two-phase system. The two-phase is characterized by the fractal structure of protein aggregates. The excess condensation of these higher-valent counterions in the double layer around the BSA causes the reversal of charge of the protein molecules resulting into reentrant of the one-phase, at higher salt concentrations. The complete phase behavior with mono and multivalent ions has been explained in terms of the interplay of electrostatic repulsion and ion-induced short-range attraction between the protein molecules.


Assuntos
Soroalbumina Bovina/química , Cloreto de Alumínio/química , Cloretos/química , Difusão Dinâmica da Luz , Cloreto de Magnésio/química , Difração de Nêutrons , Concentração Osmolar , Conformação Proteica , Espalhamento a Baixo Ângulo , Eletricidade Estática , Zircônio/química
15.
Soft Matter ; 15(27): 5412-5420, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241639

RESUMO

Suspensions of magnetic nanoplatelets in isotropic solvents are very interesting examples of ferrofluids. It has been shown that above a certain concentration ΦNI such suspensions form a ferromagnetic nematic phase, which makes this system a unique example of a dipolar fluid. The formation of a nematic phase is driven by anisotropic electrostatic and long-range dipolar magnetic interactions. Here, we present studies of the evolution of short range positional and orientational magnetic order in suspensions with volume fractions below and above ΦNI, using small angle neutron scattering (SANS). The results show that in the absence of an external magnetic field, short range positional and orientational order already exist at relatively low volume fractions. Polarized SANS revealed that the contribution of ferromagnetic ordering to the formation of the nematic phase is significant. The ferromagnetic correlations can be qualitatively explained by a simple model, which takes into account anisotropic screened electrostatic and dipolar magnetic interactions.


Assuntos
Nanopartículas de Magnetita/química , Simulação por Computador , Campos Magnéticos , Fenômenos Magnéticos , Imãs/química , Tamanho da Partícula
16.
Langmuir ; 34(1): 259-267, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29202235

RESUMO

The evolution of the interaction between an anionic nanoparticle and a nonionic surfactant and their resultant phase behavior in aqueous solution in the presence of electrolyte and ionic surfactants have been studied. The mixed system of anionic silica nanoparticles (Ludox LS30) with nonionic surfactant decaethylene glycol monododecylether (C12E10) forms a highly stable clear phase over a wide concentration range of surfactant. Small-angle neutron scattering (SANS) and dynamic light scattering data show that the surfactant micelles adsorb on the surface of the nanoparticle, resulting in micellar-decorated nanoparticle structures. With the addition of a small amount of electrolyte into this system, the stability gets disturbed substantially and turns to a two-phase (turbid) system. The evolution of interaction in this system has been examined, and it was found that micelle-induced long-range depletion attraction (modeled by a double Yukawa potential) between nanoparticles leads to their aggregation. Interestingly, the addition of anionic surfactant sodium dodecyl sulfate (SDS) in this two-phase system transforms it to a transparent one-phase state, suppressing the depletion-mediated aggregation of nanoparticles. This is attributed to the formation of anionic C12E10-SDS mixed micelles, and it is their repulsive micelle-micelle interaction that disrupts the depletion phenomenon. On the other hand, the addition of cationic surfactant dodecyl trimethylammonium bromide (DTAB) to the turbid LS30-C12E10 electrolyte system shows no change in the turbidity arising from an aggregated nanoparticle system. The driving interaction, in this case, is different from that of the surfactant-mediated depletion attraction; it is due to the attraction between the nanoparticles mediated by the presence of oppositely charged DTAB micelles between them, resulting in a charge-driven bridging aggregation of nanoparticles. Each of these multicomponent systems has been investigated using contrast variation SANS measurements for different contrast conditions where the role of individual components (nanoparticle or surfactant) in the mixed system has been selectively studied. These results thus show that nanoparticle-surfactant micelle interactions can be tuned by the presence of electrolyte and/or choice of surfactant combination.

17.
Langmuir ; 34(20): 5679-5695, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29672062

RESUMO

The integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules. The nanoparticle-protein complexes, in particular, are useful in the emerging field of nanobiotechnology (nanomedicine, drug delivery, and biosensors) as the nanoparticles having sizes comparable to that of living cells can access and operate within the cell. The understanding of nanoparticle interaction with different protein molecules is a prerequisite for such applications. The interaction of the two components has been shown to result in conformational changes in proteins and to affect the surface properties and colloidal stability of the nanoparticles. In this feature article, our recent studies exploring the driving interactions in nanoparticle-protein systems and resultant structures are presented. The anionic colloidal silica nanoparticles and two globular charged proteins [lysozyme and bovine serum albumin (BSA)] have been investigated as model systems. The adsorption behavior of the two proteins on nanoparticles is found to be completely different, but they both give rise to similar phase transformation from one phase to two phase in respective nanoparticle-protein systems. The presence of protein induces the short-range and long-range attraction between the nanoparticles with lysozyme and BSA, respectively. The observed phase behavior and its dependence on various physiochemical parameters (e.g., nanoparticle size, ionic strength, and solution pH) have been explained in terms of underlying interactions.


Assuntos
Nanopartículas/química , Proteínas/metabolismo , Adsorção , Muramidase/química , Proteínas/química , Soroalbumina Bovina/química , Dióxido de Silício/química
18.
Biochim Biophys Acta Bioenerg ; 1858(5): 360-365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28237493

RESUMO

Energization of thylakoid membranes brings about the acidification of the lumenal aqueous phase, which activates important regulatory mechanisms. Earlier Jajoo and coworkers (2014 FEBS Lett. 588:970) have shown that low pH in isolated plant thylakoid membranes induces changes in the excitation energy distribution between the two photosystems. In order to elucidate the structural background of these changes, we used small-angle neutron scattering on thylakoid membranes exposed to low p2H (pD) and show that gradually lowering the p2H from 8.0 to 5.0 causes small but well discernible reversible diminishment of the periodic order and the lamellar repeat distance and an increased mosaicity - similar to the effects elicited by light-induced acidification of the lumen. Our data strongly suggest that thylakoids dynamically respond to the membrane energization and actively participate in different regulatory mechanisms.


Assuntos
Difração de Nêutrons , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/metabolismo , Espalhamento a Baixo Ângulo , Tilacoides/metabolismo , Transferência de Energia , Concentração de Íons de Hidrogênio , Fluidez de Membrana , Pisum sativum/ultraestrutura , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/ultraestrutura , Folhas de Planta/metabolismo , Tilacoides/ultraestrutura
19.
Langmuir ; 33(10): 2617-2627, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28221812

RESUMO

In ionic surfactant micelles, basic interactions among distinct parts of surfactant monomers, their counterion, and additives are fundamental to tuning molecular self-assembly and enhancing viscoelasticity. Here, we investigate the addition of sodium salicylate (NaSal) to hexadecyltrimethylammonium chloride and bromide (CTAC and CTAB) and 1-hexadecylpyridinium chloride and bromide (CPyCl and CPyBr), which have distinct counterions and headgroup structures but the same hydrophobic tail. Different contrasts are obtained from small-angle neutron scattering (SANS), which probes differences between the nucleus of atoms, and X-rays SAXS, which probes differences in electron density. If combined, this contrast allows us to define specific intramicellar length scales and intermicellar interactions. SANS signals are sensitive to the contrast between the solvent (D2O) and the hydrocarbonic tails in the micellar core (hydrogen), and SAXS can access the inner structure of the polar shell because the headgroups, counterions, and penetrated salt have higher electron densities compared to the solvent and to the micellar core. The number density, intermicellar distances, aggregation number, and inter/intramicellar repulsions are discussed on the basis of the dependence of the structure factor and form factor on the micellar aggregate morphology. Therefore, we confirm that micellar growth can be tuned by variations in the flexibility and size of the the headgroup as well as the ionic dissociation rate of its counterion. Additionally, we show that the counterion binding is even more significant to the development of viscoelasticity than the headgroup structure of a surfactant molecule. This is a surprising finding, showing the importance of electrostatic charges in the self-assembly process of ionic surfactant molecules.

20.
Langmuir ; 33(5): 1227-1238, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28079383

RESUMO

The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of BSA, a decrease in the BSA-BSA repulsion enhances the depletion attraction between the nanoparticles as pH is shifted toward the IEP. The morphology of the nanoparticle aggregates is found to be mass fractal.


Assuntos
Muramidase/química , Nanopartículas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Animais , Bovinos , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Estrutura Molecular , Muramidase/metabolismo , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA