Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338691

RESUMO

Tight junction (TJ) protein cingulin (CGN) and transcription factor forkhead box protein O1 (FOXO1) contribute to the development of various cancers. Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for some cancers. HDAC inhibitors affect the expression of both CGN and FOXO1. However, the roles and regulatory mechanisms of CGN and FOXO1 are unknown in non-small cell lung cancer (NSCLC) and normal human lung epithelial (HLE) cells. In the present study, to investigate the effects of CGN and FOXO1 on the malignancy of NSCLC, we used A549 cells as human lung adenocarcinoma and primary human lung epithelial (HLE) cells as normal lung tissues and performed the knockdown of CGN and FOXO1 by siRNAs. Furthermore, to investigate the detailed mechanisms in the antitumor effects of HDAC inhibitors for NSCLC via CGN and FOXO1, A549 cells and HLE cells were treated with the HDAC inhibitors trichostatin A (TSA) and Quisinostat (JNJ-2648158). In A549 cells, the knockdown of CGN increased bicellular TJ protein claudin-2 (CLDN-2) via mitogen-activated protein kinase/adenosine monophosphate-activated protein kinase (MAPK/AMPK) pathways and induced cell migration, while the knockdown of FOXO1 increased claudin-4 (CLDN-4), decreased CGN, and induced cell proliferation. The knockdown of CGN and FOXO1 induced cell metabolism in A549 cells. TSA and Quisinostat increased CGN and tricellular TJ protein angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) in A549. In normal HLE cells, the knockdown of CGN and FOXO1 increased CLDN-4, while HDAC inhibitors increased CGN and CLDN-4. In conclusion, the knockdown of CGN via FOXO1 contributes to the malignancy of NSCLC. Both HDAC inhibitors, TSA and Quisinostat, may have potential for use in therapy for lung adenocarcinoma via changes in the expression of CGN and FOXO1.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Proteína Forkhead Box O1 , Ácidos Hidroxâmicos , Neoplasias Pulmonares , Proteínas de Junções Íntimas , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Epiteliais/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fatores de Transcrição/metabolismo
2.
Cell Mol Neurobiol ; 43(3): 1267-1280, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35771293

RESUMO

Controlling axonal mitochondria is important for maintaining normal function of the neural network. Oxygen-glucose deprivation (OGD), a model used for mimicking ischemia, eventually induces neuronal cell death similar to axonal degeneration. Axonal mitochondria are disrupted during OGD-induced neural degeneration; however, the mechanism underlying mitochondrial dysfunction has not been completely understood. We focused on the dynamics of mitochondria in axons exposed to OGD; we observed that the number of motile mitochondria significantly reduced in 1 h following OGD exposure. In our observation, the decreased length of stationary mitochondria was affected by the following factors: first, the halt of motile mitochondria; second, the fission of longer stationary mitochondria; and third, a transformation from tubular to spherical shape in OGD-exposed axons. Motile mitochondria reduction preceded stationary mitochondria fragmentation in OGD exposure; these conditions induced the decrease of stationary mitochondria in three different ways. Our results suggest that mitochondrial morphological changes precede the axonal degeneration while ischemia-induced neurodegeneration.


Assuntos
Glucose , Oxigênio , Ratos , Animais , Oxigênio/metabolismo , Glucose/metabolismo , Gânglios Espinais/metabolismo , Ratos Sprague-Dawley , Axônios/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo
3.
Histochem Cell Biol ; 157(4): 415-426, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35024955

RESUMO

The transcription factor FOXO3 is necessary to preserve cochlear hair cells. Growth factors, including TGF-ß, closely contribute to cochlear hair cell regeneration. In the present study, to investigate the roles of FOXO3 in the ciliogenesis and cell functions of cochlear hair cells, UB/OC-2 temperature-sensitive mouse cochlear precursor hair cells were treated with TGF-ß receptor type 1 inhibitor EW-7197 or EGF receptor inhibitor AG-1478 after transfection with or without siRNA-FOXO3a. GeneChip analysis revealed that treatment with EW-7197 increased Foxo3 genes and decreased genes of Smads. During cell differentiation, treatment with EW-7197 or AG-1478 induced an increase in length of cilia-like structures that were positive for acetylated tubulin and inhibited cell migration. Treatment with EW-7197 also increased cell metabolism measured as mitochondrial basal respiration (oxygen consumption rate). The effects of EW-7197 were stronger than those of AG-1478. Knockdown of FOXO3 prevented the growth of cilia-like structures induced by EW-7197 or AG-1478 and induced cell migration under treatment with EW-7197. No change of the epithelial cell polarity molecule PAR3 was observed with any treatment. Treatment with the antimicrobial agent amikacin prevented the growth of cilia-like structures induced by EW-7197 and induced apoptosis. Pretreatment with the glucocorticoid dexamethasone inhibited the apoptosis induced by amikacin. This in vitro model of mouse cochlear hair cells suggests that FOXO3/TGF-ß signaling plays a crucial role in ciliogenesis and cell functions during differentiation of cochlear hair cells. This model is useful for analysis of the mechanisms of hearing loss and to find therapeutic agents to prevent it.


Assuntos
Amicacina , Fator de Crescimento Transformador beta , Amicacina/farmacologia , Animais , Diferenciação Celular , Células Ciliadas Auditivas , Camundongos , Temperatura
4.
FASEB J ; 35(9): e21742, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403506

RESUMO

Withdrawal from contact inhibition is necessary for epithelial cancer precursor cells to initiate cell growth and motility. Nevertheless, little is understood about the mechanism for the sudden initiation of cell growth under static conditions. We focused on cellular junctions as one region where breaking out of contact inhibition occurs. In well-differentiated endometrial cancer cells, Sawano, the ligand administration for tricellular tight junction protein LSR, which transiently decreased the robust junction property, caused an abrupt increase in cell motility and consequent excessive multilayered cell growth despite being under contact inhibition conditions. We observed that macropinocytosis essentially and temporarily occurred as an antecedent event for the above process at intercellular junctions without disruption of the junction apparatus but not at the apical plasma membrane. Collectively, we concluded that the formation of macropinocytosis, which is derived from tight junction-mediated signaling, was triggered for the initiation of cell growth in static precancerous epithelium.


Assuntos
Adesão Celular , Inibição de Contato , Pinocitose , Receptores de Lipoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Toxinas Bacterianas/farmacologia , Sítios de Ligação , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fenótipo , Pinocitose/efeitos dos fármacos , Transporte Proteico , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
5.
Histochem Cell Biol ; 155(6): 637-653, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33974136

RESUMO

Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for non-small cell lung cancer (NSCLC). However, more preclinical studies of HDAC inhibitors in NSCLC and normal lung epithelial cells are required to evaluate their antitumor activities and mechanisms. The bicellular tight junction molecule claudin-2 (CLDN-2) is highly expressed in lung adenocarcinoma tissues and increase the proliferation of adenocarcinoma cells. Downregulation of the tricellular tight junction molecule angulin-1/LSR induces malignancy via EGF-dependent CLDN-2 and TGF-ß-dependent cellular metabolism in human lung adenocarcinoma cells. In the present study, to investigate the detailed mechanisms of the antitumor activities of HDAC inhibitors in lung adenocarcinoma, human lung adenocarcinoma A549 cells and normal lung epithelial cells were treated with the HDAC inibitors Trichostatin A (TSA) and Quisinostat (JNJ-2648158) with or without TGF-ß. Both HDAC inhibitors increased anguin-1/LSR, decrease CLDN-2, promoted G1 arrest and prevented the migration of A549 cells. Furthermore, TSA but not Quisinostat with or without TGF-ß induced cellular metabolism indicated as the mitochondrial respiration measured using the oxygen consumption rate. In normal human lung epithelial cells, treatment with TSA and Quisinostat increased expression of LSR and CLDN-2 and decreased that of CLDN-1 with or without TGF-ß in 2D culture. Quisinostat but not TSA with TGF-ß increased CLDN-7 expression in 2D culture. Both HDAC inhibitors prevented disruption of the epithelial barrier measured as the permeability of FD-4 induced by TGF-ß in 2.5D culture. TSA and Quisinostat have potential for use in therapy for lung adenocarcinoma via changes in the expression of angulin-1/LSR and CLDN-2.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Junções Íntimas/antagonistas & inibidores , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Junções Íntimas/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445093

RESUMO

The airway epithelium of the human nasal mucosa acts as a physical barrier that protects against inhaled substances and pathogens via bicellular and tricellular tight junctions (bTJs and tTJs) including claudins, angulin-1/LSR and tricellulin. High mobility group box-1 (HMGB1) increased by TGF-ß1 is involved in the induction of nasal inflammation and injury in patients with allergic rhinitis, chronic rhinosinusitis, and eosinophilic chronic rhinosinusitis. However, the detailed mechanisms by which this occurs remain unknown. In the present study, to investigate how HMGB1 affects the barrier of normal human nasal epithelial cells, 2D and 2.5D Matrigel culture of primary cultured human nasal epithelial cells were pretreated with TGF-ß type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. Knockdown of angulin-1/LSR downregulated the epithelial barrier. Treatment with EW-7197 decreased angulin-1/LSR and concentrated the expression at tTJs from bTJs and increased the epithelial barrier. Treatment with a binder to angulin-1/LSR angubindin-1 decreased angulin-1/LSR and the epithelial barrier. Treatment with HMGB1 decreased angulin-1/LSR and the epithelial barrier. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen. Pretreatment with EW-7197 prevented the effects of HMGB1. HMGB1 disrupted the angulin-1/LSR-dependent epithelial permeability barriers of HNECs via TGF-ß signaling in HNECs.


Assuntos
Proteína HMGB1/metabolismo , Mucosa Nasal/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Mucosa Nasal/citologia
7.
Biochem Biophys Res Commun ; 527(2): 553-560, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32423802

RESUMO

A non-histone chromatin-associated protein, high mobility group box 1 (HMGB1), which impairs the airway epithelial barrier, is involved in the induction of airway inflammation in patients with allergy, asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Tricellular tight junctions (tTJs) form at the convergence of bicellular tight junctions (bTJs). Angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) is a novel molecule present at tricellular contacts and contributes to the epithelial barrier and cellular metabolism. Adenosine monophosphate-activated protein kinase (AMPK) is a central metabolic regulator and has a reciprocal association with TJs. In the present study, to examine how HMGB1 contributes to airway epithelial barrier disruption and the cellular metabolism indicated as mitochondrial respiration, bronchial epithelial Calu-3 cells were transfected with siRNAs of angulin-1/LSR or treated with HMGB1 and the relationship between HMGB1 and angulin-1/LSR was investigated. Knockdown of angulin-1/LSR upregulated the expression of the tight junction molecule claudin-2, AMPK activity, and mitochondrial respiration, and downregulated the epithelial barrier. Treatment with HMGB1 downregulated angulin-1/LSR expression and the epithelial barrier, and upregulated claudin-2 expression, AMPK activity and mitochondrial respiration. Treatment with EW-7197, a transforming growth factor-ß (TGF-ß) type I receptor kinase inhibitor, prevented all the effects of HMGB1 in Calu-3 cells. HMGB1-downregulated angulin-1/LSR induced epithelial barrier disruption via claudin-2 and cellular metabolism via AMPK in airway epithelial Calu-3 cells. The effects of HMGB1 contribute to TGF-ß signaling and EW-7197 shows potential for use in therapy for HMGB1-induced airway inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Claudina-2/metabolismo , Células Epiteliais/metabolismo , Proteína HMGB1/metabolismo , Receptores de Lipoproteínas/metabolismo , Linhagem Celular , Regulação para Baixo , Humanos , Inflamação/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Junções Íntimas/metabolismo , Fatores de Transcrição
8.
Histochem Cell Biol ; 154(2): 197-213, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32266459

RESUMO

Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias do Endométrio/metabolismo , Receptores de Lipoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Movimento Celular , Células Cultivadas , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Receptores de Lipoproteínas/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
9.
Histochem Cell Biol ; 153(1): 5-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31650247

RESUMO

Lipolysis-stimulated lipoprotein receptor (LSR)/angulin-1 is a crucial molecule of tricellular contacts in the epithelial barrier of normal cells and the malignancy of cancer cells. To investigate whether LSR/angulin-1 affects the epithelial barrier and malignancy in human pancreatic cancer, human pancreatic cancer cell line HPAC was used. Treatment with EGF or TGF-ß increased the expression of LSR, but not tricellulin (TRIC), and induced the localization of LSR and TRIC to bicellular tight junctions from tricellular tight junctions. TGF-ß receptor type-1 inhibitor EW-7197 prevented changes of the distribution and the barrier function of LSR by TGF-ß. Knockdown of LSR increased cell migration, invasion, proliferation and EGF ligand amphiregulin expression and decreased the epithelial barrier. Treatment with amphiregulin induced cell migration and invasion and knockdown of amphiregulin prevented the increases of cell migration, invasion and proliferation caused by knockdown of LSR. Treatment with LSR ligand peptide angubindin-1 decreased the epithelial barrier and the expression of LSR, but not TRIC, and increased cell invasion. Knockdown of TRIC decreased cell migration and the epithelial barrier. In immunohistochemical analysis of human pancreatic cancer tissues, LSR and TRIC were found to be localized at the cell membranes of normal pancreatic ducts and well-differentiated pancreatic ductal adenocarcinomas (PDAC), whereas in poorly differentiated PDAC, LSR was weakly detected in the cytoplasm. Amphiregulin was highly expressed in the cytoplasm of well- and poorly differentiated PDAC. In pancreatic cancer, LSR contributes to the epithelial barrier and malignancy via growth factors and may be a potential targeting molecule in the therapy.


Assuntos
Células Epiteliais/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores de Lipoproteínas/metabolismo , Junções Íntimas/metabolismo , Movimento Celular , Proliferação de Células , Células Epiteliais/patologia , Humanos , Neoplasias Pancreáticas/patologia , Fatores de Transcrição , Células Tumorais Cultivadas
10.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182652

RESUMO

High mobility group box 1 protein (HMGB1) is involved in the pathogenesis of inflammatory bowel disease (IBD). Patients with IBD develop zinc deficiency. However, the detailed roles of HMGB1 and zinc deficiency in the intestinal epithelial barrier and cellular metabolism of IBD remain unknown. In the present study, Caco-2 cells in 2D culture and 2.5D Matrigel culture were pretreated with transforming growth factor-ß (TGF-ß) type 1 receptor kinase inhibitor EW-7197, epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 and a TNFα antibody before treatment with HMGB1 and inflammatory cytokines (TNFα and IFNγ). EW-7197, AG-1478 and the TNFα antibody prevented hyperpermeability induced by HMGB1 and inflammatory cytokines in 2.5D culture. HMGB1 affected cilia formation in 2.5D culture. EW-7197, AG-1478 and the TNFα antibody prevented the increase in cell metabolism induced by HMGB1 and inflammatory cytokines in 2D culture. Furthermore, ZnSO4 prevented the hyperpermeability induced by zinc chelator TPEN in 2.5D culture. ZnSO4 and TPEN induced cellular metabolism in 2D culture. The disruption of the epithelial barrier induced by HMGB1 and inflammatory cytokines contributed to TGF-ß/EGF signaling in Caco-2 cells. The TNFα antibody and ZnSO4 as well as EW-7197 and AG-1478 may have potential for use in therapy for IBD.


Assuntos
Citocinas/metabolismo , Etilenodiaminas/farmacologia , Proteína HMGB1/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Compostos de Anilina/farmacologia , Células CACO-2 , Quelantes/farmacologia , Proteína HMGB1/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Modelos Biológicos , Permeabilidade/efeitos dos fármacos , Quinazolinas/farmacologia , Receptores de Lipoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Tirfostinas/farmacologia , Sulfato de Zinco/farmacologia
11.
Exp Cell Res ; 371(1): 31-41, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044945

RESUMO

Guanylate-binding protein-1 (GBP-1) is an interferon-inducible large GTPase involved in the epithelial barrier at tight junctions. To investigate the role of GBP-1 in the epithelial barrier, primary human salivary gland duct epithelial cells were treated with the the proinflammatory cytokines IFNγ, IL-1ß, TNFα and the growth factor TGF-ß. Treatment with IFNγ, IL-1ß, or TNFα markedly enhanced GBP-1 and the epithelial barrier function, and induced not only CLDN-7 but also the tricellular tight junction molecule lipolysis-stimulated lipoprotein receptor (LSR). Knockdown of GBP-1 by its siRNA induced endocytosis of tight junction molecules, and prevented the increases of CLDN-7 and LSR with the upregulation of the epithelial barrier function induced by treatment with IFNγ or TNFα. Treatment with a PKCα inhibitor induced expression of GBP-1, CLDN-7 and LSR and enhanced the epithelial barrier function. In almost intact salivary gland ducts from patients with IgG4-related disease (IgG4-RD) indicated significant infiltration of IgG-positive plasma cells, expression of GBP-1, CLDN-7 and LSR was increased. These findings indicated that GBP-1 might play a crucial role in barrier function of normal human salivary gland duct epithelium and perform a preventive role in the duct epithelium of IgG4-RD disease.


Assuntos
Claudinas/genética , Células Epiteliais/metabolismo , Proteínas de Ligação ao GTP/genética , Doença Relacionada a Imunoglobulina G4/genética , Imunoglobulina G/genética , Receptores de Lipoproteínas/genética , Junções Íntimas/metabolismo , Transporte Biológico , Claudinas/imunologia , Endocitose , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Epitélio/efeitos dos fármacos , Epitélio/imunologia , Epitélio/patologia , Epitélio/cirurgia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/imunologia , Regulação da Expressão Gênica , Humanos , Imunoglobulina G/metabolismo , Doença Relacionada a Imunoglobulina G4/imunologia , Doença Relacionada a Imunoglobulina G4/patologia , Doença Relacionada a Imunoglobulina G4/cirurgia , Interferon gama/farmacologia , Ocludina/genética , Ocludina/imunologia , Permeabilidade/efeitos dos fármacos , Plasmócitos/imunologia , Plasmócitos/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores de Lipoproteínas/imunologia , Ductos Salivares/imunologia , Ductos Salivares/patologia , Ductos Salivares/cirurgia , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/imunologia , Junções Íntimas/ultraestrutura , Fatores de Transcrição , Fator de Necrose Tumoral alfa/farmacologia
12.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330820

RESUMO

Maintaining a robust epithelial barrier requires the accumulation of tight junction proteins, LSR/angulin-1 and tricellulin, at the tricellular contacts. Alterations in the localization of these proteins temporarily cause epithelial barrier dysfunction, which is closely associated with not only physiological differentiation but also cancer progression and metastasis. In normal human endometrial tissues, the endometrial cells undergo repeated proliferation and differentiation under physiological conditions. Recent observations have revealed that the localization and expression of LSR/angulin-1 and tricellulin are altered in a menstrual cycle-dependent manner. Moreover, it has been shown that endometrial cancer progression affects these alterations. This review highlights the differences in the localization and expression of tight junction proteins in normal endometrial cells and endometrial cancers and how they cause functional changes in cells.


Assuntos
Neoplasias do Endométrio/metabolismo , Neoplasias/metabolismo , Receptores de Lipoproteínas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Humanos , Lipólise/fisiologia , Receptores de Lipoproteínas/fisiologia , Proteínas de Junções Íntimas/fisiologia
14.
Cell Biol Toxicol ; 34(2): 93-107, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28656345

RESUMO

Cobalt is a trace element that localizes in the human body as cobalamin, also known as vitamin B12. Excessive cobalt exposure induces a peripheral neuropathy, the mechanisms of which are yet to be elucidated. We investigated how cobalt may affect mitochondrial motility in primary cultures of rat dorsal root ganglion (DRG). We observed mitochondrial motility by time-lapse imaging after DsRed2 tagging via lentivirus, mitochondrial structure using transmission electron microscopy (TEM), and axonal swelling using immunocytochemical staining. The concentration of cobaltous ion (Co2+) required to significantly suppress mitochondrial motility is lower than that required to induce axonal swelling following a 24-h treatment. Exposure to relatively low concentrations of Co2+ for 48 h suppressed mitochondrial motility without leading to axonal swelling. TEM images indicated that Co2+ induces mitochondrial destruction. Our results show that destruction of the axonal mitochondria precedes the axonal degeneration induced by Co2+ exposure.


Assuntos
Axônios/efeitos dos fármacos , Cobalto/toxicidade , Gânglios Espinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Axônios/ultraestrutura , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/embriologia , Gânglios Espinais/ultraestrutura , Idade Gestacional , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Neurônios/ultraestrutura , Cultura Primária de Células , Ratos Sprague-Dawley
15.
Mol Pharmacol ; 87(5): 815-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25680752

RESUMO

Staurosporine (STS) has been known as a classic protein kinase C inhibitor and is a broad-spectrum inhibitor targeting over 250 protein kinases. In this study, we observed that STS treatment induced drastic morphologic changes, such as elongation of a very large number of nonbranched, actin-based long cell protrusions that reached up to 30 µm in an hour without caspase activation or PARP cleavage in fibroblasts and epithelial cells. These cell protrusions were elongated not only from the free cell edge but also from the cell-cell junctions. The elongation of STS-dependent protrusions was required for ATP hydrolysis and was dependent on myosin-X and fascin but independent of Cdc42 and VASP. Interestingly, in the presence of an actin polymerization inhibitor, namely, cytochalasin D, latrunculin A, or jasplakinolide, STS treatment induced excess tubulin polymerization, which resulted in the formation of many extra-long microtubule (MT)-based protrusions toward the outside of the cell. The unique MT-based protrusions were thick and linear compared with the STS-induced filaments or stationary filopodia. These protrusions, which were composed of microtubules, have been scarcely observed in cultured non-neuronal cells. Taken together, our findings revealed that STS-sensitive kinases are essential for the maintenance of normal cell morphology, and a common unidentified molecular mechanism is involved in the formation of the following two different types of protrusions: actin-based filaments and MT-based shafts.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/efeitos dos fármacos , Microtúbulos/metabolismo , Estaurosporina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miosinas/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Tubulina (Proteína)/metabolismo
16.
J Membr Biol ; 248(2): 327-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652184

RESUMO

The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18ß-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.


Assuntos
Antineoplásicos/farmacologia , Comunicação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Junções Comunicantes/efeitos dos fármacos , Mucosa Nasal/metabolismo , Triazinas/farmacologia , Expressão Gênica , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Humanos , Interleucina-8/biossíntese , Ácidos Oleicos/farmacologia , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
17.
Histochem Cell Biol ; 143(5): 471-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25511417

RESUMO

c-Jun N-terminal kinase (JNK), known as a stress-activated protein kinase, regulates normal epithelial biological processes, including assembly of adherens and tight junctions, and it is involved in the development of several cancers. The JNK inhibitor SP600125 enhances epithelial barrier function through modulation of tight junction molecules in normal human pancreatic epithelial cells. Furthermore, this JNK inhibitor suppresses the growth of human pancreatic cancer cells. However, the effects of SP600125 on the epithelial barrier in human pancreatic cancer cells remain unknown. In the present study, the JNK inhibitor SP600125 markedly enhanced the barrier function and cell elongation of well-differentiated human pancreatic cancer cell line HPAC in a Ca-switch model. The epithelial barrier function induced by SP600125 was regulated by phosphorylated ß-catenin without changes in the tight junction molecules. The cell elongation induced by SP600125 was closely related to the expression of the F-actin-binding protein DrebrinE. These findings suggest that JNK is involved in the regulation of the epithelial barrier function and cell shape during remodeling of pancreatic cancer cells. The JNK inhibitor SP600125 may have potential as a therapeutic drug for pancreatic cancer via induction of differentiation.


Assuntos
Antracenos/farmacologia , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Junções Íntimas/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosforilação , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/enzimologia , Junções Íntimas/patologia , Fatores de Tempo , Transfecção , beta Catenina/metabolismo
18.
Respir Res ; 15: 21, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24548792

RESUMO

BACKGROUND: Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. METHODS: To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. RESULTS: PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and ß-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. CONCLUSIONS: PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação para Baixo/genética , Metaloendopeptidases/fisiologia , Mucosa Nasal/enzimologia , Mucosa Nasal/microbiologia , Elastase Pancreática/fisiologia , Receptor PAR-2/antagonistas & inibidores , Junções Íntimas/enzimologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Mucosa Nasal/metabolismo , Receptor PAR-2/biossíntese , Junções Íntimas/microbiologia
19.
Tissue Barriers ; : 2361976, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825958

RESUMO

The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and ß-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with ß-estradiol with or without EGF or TGF-ß decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.

20.
Tissue Barriers ; : 2304443, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225862

RESUMO

It is known that there are abnormalities of tight junction functions, cell migration and mitochondrial metabolism in human endometriosis and endometrial carcinoma. In this study, we investigated the effects of growth factors and their inhibitors on the epithelial permeability barrier, cell migration and mitochondrial metabolism in 2D and 2.5D cultures of human endometrioid endometrial carcinoma Sawano cells. We also investigated the changes of bicellular and tricellular tight junction molecules and ciliogenesis induced by these inhibitors. The growth factors TGF-ß and EGF affected the epithelial permeability barrier, cell migration and expression of bicellular and tricellular tight junction molecules in 2D and 2.5D cultures of Sawano cells. EW-7197 (a TGF-ß receptor inhibitor), AG1478 (an EGFR inhibitor) and SP600125 (a JNK inhibitor) affected the epithelial permeability barrier, cell migration and mitochondrial metabolism and prevented the changes induced by TGF-ß and EGF in 2D and 2.5D cultures. EW-7197 and AG1478 induced ciliogenesis in 2.5D cultures. In conclusion, TGF-ß and EGF promoted the malignancy of endometrial cancer via interplay among the epithelial permeability barrier, cell migration and mitochondrial metabolism. EW-7197 and AG1478 may be useful as novel therapeutic treatments options for endometrial cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA