Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Opt Express ; 32(8): 13965-13977, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859354

RESUMO

Light polarization rotations, created by applied optical field, are examined experimentally and theoretically in a photosensitive chiral nematic fluid. The polarization rotation of the transmitted beam is initiated by illuminating the sample with uniform UV light. The operation is tunable and reversible, depending on the UV intensity. It was revealed that the rotations can be ascribed to the optical-field-induced chirality effect, where the helical structure in chiral nematics changes in accordance with the UV intensity. The evolution of the helical structure as well as its effect on the light polarization upon illumination by uniform UV light have been monitored experimentally and compared by calculations based on the continuum theory. Our results proved that a polarization field with specific characteristics can be achieved using the remote and precise optical control.

2.
Chirality ; 36(2): e23646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353318

RESUMO

The emergence of new synthetic cathinones continues to be a matter of public health concern. In fact, already known products (drugs) are being rapidly replaced by new structurally related alternatives, whereby modifications in the basic cathinone structure are used by manufacturers to circumvent the legislation. On the other hand, some derivatives of synthetic cathinones represent important pharmaceuticals with antidepressant properties. In the search for pharmaceutically relevant analogs, the main goal of the present study was to design and characterize novel cyclic α-tetralone-based derivatives of synthetic cathinones. We synthesized a series of derivatives and verified their chemical structure. Subsequently, chiral separation has been accomplished by high-performance liquid chromatography (HPLC) equipped with a circular dichroism (CD) detector, which directly provided CD spectra of the enantiomers of the analyzed substances at 252 nm. Using density functional theory calculations, we have obtained stable conformers of selected enantiomers in solution and their relative abundances, which we used to simulate their spectra. The experimental and calculated data have been used to assign the absolute configuration of six as-yet unknown synthetic cathinones.


Assuntos
Catinona Sintética , Tetralonas , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular
3.
J Org Chem ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655948

RESUMO

Inherently chiral compounds, such as calixarenes, are chiral due to a nonplanar three-dimensional (3D) structure. Determining their conformation is essential to understand their properties, with nuclear magnetic resonance (NMR) spectroscopy being one applicable method. Using alignment media to measure residual dipolar couplings (RDCs) to obtain structural information is advantageous when classical NMR parameters like the nuclear Overhauser effect (NOE) or J-couplings fail. Besides providing more accurate structural information, the alignment media can induce different orientations of enantiomers. In this study, we examined the ability of polyglutamates with different side-chain moieties─poly-γ-benzyl-l-glutamate (PBLG) and poly-γ-p-biphenylmethyl-l-glutamate (PBPMLG) ─to enantiodifferentiate the inherently chiral phenoxathiin-based thiacalix[4]arenes. Both media, in combination with two solvents, allowed for enantiodiscrimination, which was, to the best of our knowledge, proved for the first time on inherently chiral compounds. Moreover, using the experimental RDCs, we investigated the calix[4]arenes conformational preferences in solution, quantitatively analyzed the differences in the alignment of the enantiomers, and discussed the pitfalls of the use of the RDC analysis.

4.
Chirality ; 34(8): 1065-1077, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35596543

RESUMO

Chiral zwitterion ion exchangers represent efficient chiral stationary phases for stereoselective resolution of various analytes including chiral acids, bases, and zwitterions. In this contribution, we have focused on utilization of chiral zwitterionic sorbents, denoted as ZWIX (+A) and ZWIX (-A). These are analogical chiral systems to commercially available columns, Chiralpak ZWIX (+) and Chiralpak ZWIX (-), which are usually operated with buffered mobile phases. In this contribution, we have studied the enantiorecognition power of the ZWIX (+A) and ZWIX (-A) columns on a series of dipeptides operated under buffer-free reversed-phase conditions. Retention characteristics of zwitterionic dipeptides are discussed using an electrostatically driven adsorption model, which provides a good fit with both monotonous and U-shaped curves.


Assuntos
Alcaloides de Cinchona , Cinchona , Cromatografia Líquida de Alta Pressão , Dipeptídeos , Estereoisomerismo
5.
Chirality ; 34(8): 1151-1161, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656848

RESUMO

Optically active linear polyimides and hyperbranched poly (amic acid-imide) were prepared by using procedures varying in particular in the maximum temperature employed in their synthesis. The two types of linear polyimides were based on 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 1,2-diaminocylohexane enantiomers or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 2,2'-diamino-1,1'-binaphthalene enantiomers. The amine-terminated hyperbranched poly (amic acid-imide) was prepared from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 4,4',4″-triaminotriphenylmethane, and its end groups were modified with the chiral selectors N-acetyl-D-phenylalanine or N-acetyl-L-phenylalanine. The final structure of the products was analyzed by IR spectroscopy, and their optical activity was evaluated and confirmed by polarimetry or circular dichroism.


Assuntos
Anidridos , Imidas , Anidridos/química , Dicroísmo Circular , Imidas/química , Estereoisomerismo , Temperatura
6.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365873

RESUMO

We report on fabricated titanium dioxide (TiO2) thin films along with a transimpedance amplifier (TIA) test setup as a photoconductivity detector (sensor) in the ultraviolet-C (UV-C) wavelength region, particularly at 260 nm. TiO2 thin films deposited on high-resistivity undoped silicon-substrate at thicknesses of 100, 500, and 1000 nm exhibited photoresponsivities of 81.6, 55.6, and 19.6 mA/W, respectively, at 30 V bias voltage. Despite improvements in the crystallinity of the thicker films, the decrease in photocurrent, photoconductivity, photoconductance, and photoresponsivity in thicker films is attributed to an increased number of defects. Varying the thickness of the film can, however, be leveraged to control the wavelength response of the detector. Future development of a chip-based portable UV-C detector using TiO2 thin films will open new opportunities for a wide range of applications.

7.
J Sep Sci ; 44(18): 3348-3356, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34270873

RESUMO

In continuation of our efforts to synthesize a highly dedicated strong cation exchanger, we introduce four chiral stationary phases based on a laterally substituted naphthalene core featuring chiral 2-aminocyclohexansulfonic acid as the chiral cation-exchange site. The selectors were modified with two different terminal units, which enabled immobilization to the silica support by thiol-ene radical reaction or azide-yne click chemistry. The chromatographic parameters of these chiral stationary phases were determined using a set of chiral amines, mainly from the family of ß-blocker pharmaceuticals. The chiral stationary phases immobilized by means of click chemistry were found to be superior to those possessing the sulfide linker to the silica support. The chromatographic results and visualization of density functional theory-calculated conformations of the selectors hint at a combination of a steric and electronic effect of the triazole ring in the course of chiral resolution of the target analytes.


Assuntos
Resinas de Troca de Cátion/química , Naftalenos/química , Preparações Farmacêuticas , Azidas/química , Cromatografia Líquida de Alta Pressão/métodos , Química Click/métodos , Modelos Moleculares , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Estereoisomerismo
8.
J Sep Sci ; 42(24): 3653-3661, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31625277

RESUMO

Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush-type chiral stationary phase based on 9-O-tert-butylcarbamoyl quinidine. We have prepared corresponding stationary phases under identical experimental conditions and determined the parameters of the modified silica by physisorption measurements and scanning electron microscopy. Enantiorecognition properties of the chiral stationary phases have been studied using preferential sorption experiments. The same material was slurry-packed into chromatographic columns and the chromatographic properties have been evaluated in liquid chromatography. We show that preferential sorption can provide valuable information about the influence of the pore size and total pore volume on the interaction of analytes of different size with the chirally-modified silica surface. The data can be used to understand differences observed in chromatographic evaluation of the chiral stationary phases. The combination of preferential sorption and liquid chromatography separation can provide detailed information on new chiral stationary phases.

9.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897743

RESUMO

Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid state to isotropic liquid. Molecules of LCs in a mesophase still maintain the anisotropy of solid crystals, while simultaneously exhibiting the fluidity of liquids, which gives the system the ability to react immediately to external stimuli such as electric or magnetic fields, light, mechanical stress, pressure and, of course, temperature. For the proper function of LC-based devices, not only chemical, but also optical purity of materials is strongly desirable, since any impurity could be detrimental to the self-assembly of the molecules. Therefore, in this study we aimed to verify synthetic methods published in the literature, which are used nowadays to prepare chiral building blocks based on lactic acid, for their enantioselectivity. Moreover, we have focused on the development of an analytical chiral separation method for target liquid crystalline materials. Using a chiral polysaccharide-based column operated in liquid chromatography mode, we show that not all published methods of LC synthesis are enantioselective, which could lead to significant differences in the properties of the resulting materials. We show that high-performance liquid chromatography with UV detection and supercritical fluid chromatography with UV and mass spectrometry detection enable full control over the chemical and optical purity of the target LCs and the corresponding chiral building blocks. For the first time, we utilise supercritical fluid chromatography with mass detection for the direct chiral analysis of liquid crystalline materials and impurities formed during the synthesis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Ácido Láctico/química , Cristais Líquidos , Espectrometria de Massas , Estereoisomerismo
10.
Org Biomol Chem ; 16(36): 6809-6817, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30203820

RESUMO

Triphenylphosphine (Ph3P) activated by various electrophiles (e.g., alkyl diazocarboxylates) represents an effective mediator of esterification and other nucleophilic substitution reactions. We report herein an aza-reagent-free procedure using flavin catalyst (3-methyl riboflavin tetraacetate), triphenylphosphine, and visible light (448 nm), which allows effective esterification of aromatic and aliphatic carboxylic acids with alcohols. Mechanistic study confirmed that photoinduced electron transfer from triphenylphosphine to excited flavin with the formation of Ph3P˙+ is a crucial step in the catalytic cycle. This allows reactive alkoxyphosphonium species to be generated by reaction of an alcohol with Ph3P˙+ followed by single-electron oxidation. Unexpected stereoselectivity control by the solvent was observed, allowing switching from inversion to retention of configuration during esterification of (S)- or (R)-1-phenylethanol; for example with phenylacetic acid, the ratio shifting from 10 : 90 (retention : inversion) in trifluoromethylbenzene to 99.9 : 0.1 in acetonitrile. Our method uses nitrobenzene to regenerate the flavin photocatalyst. This new approach to flavin re-oxidation has also been successfully proved in benzyl alcohol oxidation, which is a "standard" process among flavin-mediated photooxidations.

11.
Chirality ; 30(5): 548-559, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29424468

RESUMO

Recently, there has been a worldwide substantial increase in the consumption of new psychoactive substances (NPS), compounds that mimic the structure of illicit drugs, such as amphetamines or ecstasy. The producers try to avoid the law by a slight modification of illicit structures, thereby developing dozens of temporarily legal NPS every year. The current trends in the detection and monitoring of such substances demand a fast and reliable analysis. Molecular spectroscopy represents a highly effective tool for the identification of NPS and chiroptical methods can provide further information on their 3D structure, which is the key for the determination of their biological activity. We present the first systematic study of NPS, specifically butylone, combining chiroptical and vibrational spectroscopies with ab initio calculations. According to density functional theory calculations, 6 stable lowest energy conformers of butylone were found and their molecular structure was described. For each conformer, the relative abundance based on the Boltzmann distribution was estimated, their population weighted spectra predicted and compared to the experimental results. Very good agreement between the experimental and the simulated spectra was achieved, which allowed not only the assignment of the absolute configuration, but also a precise description of the molecular structure.

12.
J Sep Sci ; 41(6): 1355-1364, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29364568

RESUMO

In the enantiomeric separation of highly polar compounds, a traditionally challenging task for high-performance liquid chromatography, ion-exchange chiral stationary phases have found the main field of application. In this contribution, we present a series of novel anion-exchange-type chiral stationary phases for enantiomer separation of protected amino phosphonates and N-protected amino acids. Two of the prepared selectors possessed a double and triple bond within a single molecule. Thus, they were immobilized onto silica support employing either a thiol-ene (radical) or an azide-yne (copper(I)-catalyzed) click reaction. We evaluated the selectivity and the effect of immobilization proceeding either by the double bond of the Cinchona alkaloid or a triple bond of the carbamoyl moiety on the chromatographic performance of the chiral stationary phases using analytes with protecting groups of different size, flexibility, and π-acidity. The previously observed preference toward protecting groups possessing π-acidic units, which is a typical feature of Cinchona-based chiral stationary phases, was preserved. In addition, increasing the bulkiness of the selectors' carbamoyl units leads to significantly reduced retention times, while very high selectivity toward the tested analytes is retained.


Assuntos
Cinchona/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Estrutura Molecular , Estereoisomerismo
13.
J Sep Sci ; 41(6): 1199-1207, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29160617

RESUMO

The enantiomers of trans-paroxetine (the selectand) were separated on four chiral stationary phases incorporating either quinine [ZWIX(+), ZWIX(+A)] or quinidine [ZWIX(-), ZWIX(-A)] and (R,R)-aminocyclohexanesulfonic acid [in ZWIX(-), and ZWIX(+A)] or (S,S)-aminocyclohexanesulfonic acid [in ZWIX(+), and ZWIX(-A)] chiral selectors. The zwitterion nature of the phases is due to the presence of either (R,R)- or (S,S)-aminocyclohexanesulfonic acid in the selector structure bearing the quinuclidine moiety. ZWIX(+) and ZWIX(-) phases are available on the market with the commercial names CHIRALPAK ZWIX(+) and CHIRALPAK ZWIX(-), respectively. With the aim of rationalizing the enantiomer elution order with the above chiral stationary phases, a molecular dynamic protocol was applied and two energetic parameters were initially measured: selectand conformational energy and selectand interaction energy. In the search for other descriptors allowing a better fitting with the experimental evidences, in the present work we consider an energetic parameter, defined as the selector conformational energy, which resulted to be relevant in the explanation of the experimental elution order in most of the cases. Very importantly, the computational data produced by the present study strongly support the outstanding role of the conformational energy of the chiral selector as it interacts with the analytes.


Assuntos
Alcaloides de Cinchona/química , Paroxetina/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Paroxetina/química , Estereoisomerismo
14.
J Sep Sci ; 41(6): 1216-1223, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29193634

RESUMO

The enantiomeric pairs of cis and trans stereoisomers of cyclic ß-aminohydroxamic acids and their related cis and trans cyclic ß-amino acids containing two chiral centers were directly separated on four structurally related chiral stationary phases derived from quinine and quinidine modified with (R,R)- and (S,S)-aminocyclohexanesulfonic acids. Applying these zwitterionic ion-exchangers as chiral selectors, the effects of the composition of the bulk solvent, the acid and base additives, the structures of the analytes, and temperature on the enantioresolution were investigated. To study the effects of temperature and obtain thermodynamic parameters, experiments were carried out at constant mobile phase compositions in the temperature range 5-50°C. The differences in the changes in standard enthalpy Δ(ΔH°), entropy Δ(ΔS°), and free energy Δ(ΔG°) were calculated from the linear van't Hoff plots derived from the ln α versus 1/T curves in the studied temperature range. Results thus obtained indicated enthalpy-driven separations in all cases. The sequence of elution of the enantiomers was determined and found to be reversed when ZWIX(-)™ was changed to ZWIX(+)™ or ZWIX(-A) to ZWIX(+A).


Assuntos
Aminoácidos/isolamento & purificação , Alcaloides de Cinchona/química , Ácidos Hidroxâmicos/química , Aminoácidos/química , Cromatografia Líquida , Conformação Molecular , Estereoisomerismo , Termodinâmica
15.
Amino Acids ; 47(6): 1155-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25715757

RESUMO

Deoxyhypusine hydroxylase (DOHH) is a dinuclear iron enzyme required for hydroxylation of the aminobutyl side chain of deoxyhypusine in eukaryotic translation initiation factor 5A (eIF-5A), the second step in hypusine biosynthesis. DOHH has been recently identified in P. falciparum and P. vivax. Both enzymes have very peculiar features including E-Z type HEAT-like repeats and a diiron centre in their active site. Both proteins share only 26 % amino acid identity to the human paralogue. Hitherto, no X-ray structure exists from either enzyme. However, structural predictions based on the amino acid sequence of the active site in comparison to the human enzyme show that four conserved histidine and glutamate residues provide the coordination sites for chelating the ferrous iron ions. Recently, we showed that P. vivax DOHH is inhibited by zileuton (N-[1-(1-benzothien-2-yl)ethyl]-N-hydroxyurea), a drug that is known for inhibiting human 5-lipoygenase (5-LOX) by the complexation of ferrous iron. A novel discovery program was launched to identify inhibitors of the P. falciparum DOHH from the Malaria Box, consisting of 400 chemical compounds, which are highly active in the erythrocytic stages of Malaria infections. In a first visual selection for potential ligands of ferrous iron, three compounds from different scaffold classes namely the diazonapthyl benzimidazole MMV666023 (Malaria Box plate A, position A03), the bis-benzimidazole MMV007384 (plate A, position B08), and a 1,2,5,-oxadiazole MMV665805 (plate A, position C03) were selected and subsequently evaluated in silico for their potential to complex iron ions. As a proof of principle, a bioanalytical assay was performed and the inhibition of hypusine biosynthesis was determined by GC-MS. All tested compounds proved to be active in this assay and MMV665805 exhibited the strongest inhibitory effect. Notably, the results were in accordance with the preliminary quantum-mechanical calculations suggesting the strongest iron complexation capacity for MMV665805. This compound might be a useful tool as well as a novel lead structure for inhibitors of P. falciparum DOHH.


Assuntos
Antimaláricos , Inibidores Enzimáticos , Quelantes de Ferro , Oxigenases de Função Mista/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Antimaláricos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia
16.
J Chromatogr A ; 1719: 464729, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387150

RESUMO

Current state-of-the-art chiral stationary phases (CSPs) enable chiral resolution of almost any racemic mixture of choice. The exceptions represent ionizable and ionized substances that fail at any attempts to resolve on commercially available CSPs. These compounds, however, can be efficiently separated on chiral ion exchangers. Commercially available Cinchona alkaloids-based chiral weak ion-exchangers are typically used for chiral resolution of organic acids, while zwitterion ion-exchangers are efficient in the resolution of acids, bases, and zwitterions. The latter possess in their structure a cation exchange unit, which alone can serve as a cornerstone of chiral strong cation exchangers facilitating chiral separation of various basic racemic mixtures. Although chiral strong cation exchangers (cSCX) are efficient CSPs, their structural variations have not been thoroughly studied so far. It was assumed that the mechanism of chiral recognition of basic compounds by cSCX is based predominantly on π-π-interactions, hydrogen bonding and steric interactions (CSP I). To verify this assumption, we aimed in our study on the design and synthesis of cSCX first lacking lateral polar substituents on the aromatic unit in the selector's structure (CSP II), and second, to replace the aromatic unit by a cyclohexane ring (CSP III and IV), thereby to omit completely the π-π-interactions. We hypothesized that this structural change should lead to a partial or complete loss of enantiorecognition power of the selectors. Surprisingly, the non-aromatic cSCXs have shown chiral recognition capability comparable to that of previously described chiral cation exchange-type CSPs: from 16 analytes screened, 11 analytes were baseline resolved and 5 partially resolved on CSP I, while non-aromatic CSP III resolved 10 analytes baseline and 6 partially. We discuss the structural motifs of the known cSCX and the novel non-aromatic selectors in a relationship with their chromatographic performance using a set of basic analytes. Moreover, we present a theory of an effective chiral recognition mechanism by two novel non-aromatic cSCXs based on the chromatographic results and quantum mechanical calculations.


Assuntos
Alcaloides de Cinchona , Estrutura Molecular , Alcaloides de Cinchona/química , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cátions , Ácidos , Estereoisomerismo
17.
J Chromatogr A ; 1717: 464664, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271770

RESUMO

Chiral resolution of polar organic compounds such as amino acids and peptides represents an important chromatographic task due to increasing significance of natural species, which play important signaling and regulatory roles in the living organisms. Despite the number of available chiral stationary phases, this task remains challenging, since not many of the commercially available systems are capable to resolve non-derivatized zwitterionic species. In this study, we present a target-oriented design of a new class of chiral selectors. Pursuing the goal to separate amino acids, and especially short peptides, we have combined Cinchona alkaloids - quinine and quinidine - with three different biogenic dipeptides. We have synthesized six different chiral stationary phases, with selector loading of ∼200 µmol g-1, and tested their chiral recognition capabilities for acidic, basic and zwitterionic analytes using various mobile phases. We have observed that all chiral stationary phases retain the chiral anion exchange capability known for commercially available Cinchona-based columns leading to baseline or partial resolution of six out of ten analytes. The performance in chiral resolution of basic analytes is not optimum due to the weak cation exchange character of the peptidic residue. However, we report on encouraging results in the chiral resolution of short peptides, for which, depending on their structure, we see the chiral resolution of up to three stereoisomers (from four possible) in a preliminary screening.


Assuntos
Alcaloides de Cinchona , Cinchona , Dipeptídeos , Alcaloides de Cinchona/química , Quinina/química , Quinidina , Aminoácidos/química , Aminas , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos
18.
Anal Chim Acta ; 1314: 342791, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876520

RESUMO

BACKGROUND: Innovations in computer hardware and software capabilities have paved the way for advances in molecular modelling techniques and methods, leading to an unprecedented expansion of their potential applications. In contrast to the docking technique, which usually identifies the most stable selector-selectand (SO-SA) complex for each enantiomer, the molecular dynamics (MD) technique enables the consideration of a distribution of the SO-SA complexes based on their energy profile. This approach provides a more truthful representation of the processes occurring within the column. However, benchmark procedures and focused guidelines for computational treatment of enantioselectivity at the molecular level are still missing. RESULTS: Twenty-eight molecular dynamics simulations were performed to study the enantiorecognition mechanisms of seven N-3,5-dinitrobenzoylated α- and ß-amino acids (DNB-AAs), occurring with the two quinine- and quinidine-based (QN-AX and QD-AX) chiral stationary phases (CSPs), under polar-ionic conditions. The MD protocol was optimized in terms of box size, simulation run time, and frame recording frequency. Subsequently, all the trajectories were analyzed by calculating both the type and amount of the interactions engaged by the selectands (SAs) with the two chiral selectors (SOs), as well as the conformational and interaction energy profiles of the formed SA-SO associates. All the MDs were in strict agreement with the experimental enantiomeric elution order and allowed to establish (i) that salt-bridge and H-bond interactions play a pivotal role in the enantiorecognition mechanisms, and (ii) that the π-cation and π-π interactions are the discriminant chemical features between the two SOs in ruling the chiral recognition mechanism. SIGNIFICANCE: The results of this work clearly demonstrate the high contribution given by MD simulations in the comprehension of the enantiorecognition mechanism with Cinchona alkaloid-based CSPs. However, from this research endeavor it clearly emerged that the MD protocol optimization is crucial for the quality of the produced results.


Assuntos
Aminoácidos , Alcaloides de Cinchona , Simulação de Dinâmica Molecular , Alcaloides de Cinchona/química , Estereoisomerismo , Aminoácidos/química , Dinitrobenzenos/química
19.
J Chromatogr A ; 1726: 464966, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735116

RESUMO

Chromatographic behavior of novel chiral stationary phases with bonded selectors based on Cinchona alkaloids modified with dipeptides was studied using dipeptides as probe molecules. Buffer-free and salt containing hydro-organic solutions were used as the mobile phases. The selectors exhibit pseudoenantiomeric behavior with respect to the L/D or LL/DD enantiomers and do not behave so with respect to the LD/DL enantiomers. The alkaloid part of the selectors is the driver of enantioselectivity, while the dipeptide substituent plays a modulating role. The quinidine-based selectors demonstrate stronger adsorption affinity and higher enantioselectivity as compared to the quinine-based selectors. The dipeptide analytes containing a glycyl fragment are weaker retained and their enantiomers are worse separated comparing to dipeptides with both units being larger amino acids. Moreover, a phenyl group in the structure of a dipeptide analyte facilitates enantioseparation. The effect of the mobile phase composition on retention depends on the hydrophobicity of an analyte. Hydrophobic dipeptides are better eluted by methanol-rich solvents, hydrophilic dipeptides are better eluted with water-rich solvents, and dipeptides with an intermediate hydrophobicity demonstrate a U-shaped or more complicated dependence of the retention factor on the percentage of methanol. Even a small buffer addition to the mobile phase decreases retention, but the ion-exchange mechanism was not confirmed. The effect of an electrolyte is rather due to the shielding of the charged groups of the selector reducing thereby electrostatic interaction between the selector and analyte. Efficiency of the novel columns is comparable to that of other brush-type chiral columns, the highest achieved number of the theoretical plates per 1 m varying between 30,000 and 40,000.


Assuntos
Cromatografia de Fase Reversa , Alcaloides de Cinchona , Dipeptídeos , Interações Hidrofóbicas e Hidrofílicas , Alcaloides de Cinchona/química , Dipeptídeos/química , Dipeptídeos/isolamento & purificação , Estereoisomerismo , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Quinina/química , Quinina/isolamento & purificação
20.
Talanta ; 278: 126419, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908136

RESUMO

Chiral resolution of racemic compounds represents an important task in research and development and, most importantly, in the large-scale production of pharmaceuticals. Zeolites, which are already frequently utilized for their unique properties, represent materials that can be used for the development of new chiral stationary phases for liquid chromatography, simulated moving bed or enantioselective membranes. The aim of this study was to modify a series of MWW zeolites by a chiral anion-exchange type selector thereby creating a chiral stationary phase for enantiomeric resolution of acidic compounds. To evaluate the applicability of the prepared chiral stationary phase in liquid chromatography, we used N-protected amino acids as model analytes. First, we tested the new sorbents preferential sorption using N-(3,5-dinitrobenzoyl)leucine. We observed outstanding sorption properties of a zeolite-based sorbent (MCM-36), which were comparable to spherical chromatographic silica. This particular material was subsequently packed into a chromatographic column, which was tested under polar organic mode HPLC conditions facilitating baseline resolution of 5 out of 8 N-protected amino acids. Although the chromatographic performance shows several drawbacks (high backpressure, low column efficiency), it clearly documents the potential of the novel materials in chiral separation. To the best of our knowledge, this is the first example of the preparation of the chiral stationary phase based on MWW zeolites ever.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA