Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044553

RESUMO

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Assuntos
Neoplasias Hepáticas , Proteínas R-SNARE , Sinaptotagmina I , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Proteico , Proteínas R-SNARE/metabolismo , Sinaptotagmina I/metabolismo , Microambiente Tumoral
2.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241771

RESUMO

Extended-synaptotagmin 1 (E-Syt1) is an endoplasmic reticulum membrane protein that is involved in cellular lipid transport. Our previous study identified E-Syt1 as a key factor for the unconventional protein secretion of cytoplasmic proteins in liver cancer, such as protein kinase C delta (PKCδ); however, it is unclear whether E-Syt1 is involved in tumorigenesis. Here, we showed that E-Syt1 contributes to the tumorigenic potential of liver cancer cells. E-Syt1 depletion significantly suppressed the proliferation of liver cancer cell lines. Database analysis revealed that E-Syt1 expression is a prognostic factor for hepatocellular carcinoma (HCC). Immunoblot analysis and cell-based extracellular HiBiT assays showed that E-Syt1 was required for the unconventional secretion of PKCδ in liver cancer cells. Furthermore, deficiency of E-Syt1 suppressed the activation of insulin-like growth factor 1 receptor (IGF1R) and extracellular-signal-related kinase 1/2 (Erk1/2), both of which are signaling pathways mediated by extracellular PKCδ. Three-dimensional sphere formation and xenograft model analysis revealed that E-Syt1 knockout significantly decreased tumorigenesis in liver cancer cells. These results provide evidence that E-Syt1 is critical for oncogenesis and is a therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sinaptotagmina I/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Linhagem Celular , Carcinogênese
3.
Cancer Sci ; 113(7): 2378-2385, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490382

RESUMO

Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR-expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C-terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ-EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ-targeting therapy for liver cancer.


Assuntos
Receptores ErbB , Neoplasias Hepáticas , Proteína Quinase C-delta , Linhagem Celular , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA