Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833623

RESUMO

Congenital hydrocephalus (CH), characterized by cerebral ventriculomegaly, is one of the most common reasons for pediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate CH risk gene, however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated CH (totaling 2,697 parent-proband trios and 8,091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, CH, developmental delay, dysmorphic features, and other structural brain defects including corpus callosum dysgenesis and white matter hypoplasia. Eight unrelated patients were found to harbor arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven additional patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain. These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome featuring ventriculomegaly and CH.

2.
Mol Biol Rep ; 51(1): 343, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400845

RESUMO

The consumption of processed food is on the rise leading to huge intake of excess dietary salt, which strongly correlates with development of hypertension, often leading to cardiovascular diseases such as stroke and heart attack, as well as activation of the immune system. The effect of salt on macrophages is especially interesting as they are able to sense high sodium levels in tissues leading to transcriptional changes. In the skin, macrophages were shown to influence lymphatic vessel growth which, in turn, enables the transport of excess salt and thereby prevents the development of high blood pressure. Furthermore, salt storage in the skin has been linked to the onset of pro-inflammatory effector functions of macrophages in pathogen defence. However, there is only little known about the mechanisms which are involved in changing macrophage function to salt exposure. Here, we characterize the response of macrophages to excess salt both in vitro and in vivo. Our results validate and strengthen the notion that macrophages exhibit chemotactic migration in response to salt gradients in vitro. Furthermore, we demonstrate a reduction in phagocytosis and efferocytosis following acute salt challenge in vitro. While acute exposure to a high-salt diet in vivo has a less pronounced impact on macrophage core functions such as phagocytosis, our data indicate that prolonged salt challenge may exert a distinct effect on the function of macrophages. These findings suggest a potential role for excessive salt sensing by macrophages in the manifestation of diseases related to high-salt diets and explicitly highlight the need for in vivo work to decipher the physiologically relevant impact of excess salt on tissue and cell function.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Humanos , Macrófagos , Cloreto de Sódio , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA