Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604136

RESUMO

Remote thermal sensing has emerged as a temperature detection technique for tasks in which standard contact thermometers cannot be used due to environment or dimension limitations. One of such challenging tasks is the measurement of temperature in microelectronics. Here, optical thermometry using co-doped and mixed dual-center Gd2O3:Tb3+/Eu3+samples were realized. Ratiometric approach based on monitoring emission intensities of Tb3+(5D4-7F5) and Eu3+(5D0-7F2) transition provided sensing in the range of 30 °C-80 °C. Dispersion system type only slightly affected relative sensitivity, accuracy and precision. The applicability of phosphors synthesized to be utilized as remote optical thermometers for microelectronics has been proved with an example on a surface mount resistor and microcontroller.

2.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276610

RESUMO

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

3.
Chemistry ; 29(47): e202300540, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293937

RESUMO

Fluorescent isocoumarin-fused cycloalkynes, which are reactive in SPAAC and give fluorescent triazoles regardless of the azide nature, have been developed. The key structural feature that converts the non-fluorescent cycloalkyne/triazole pair to its fluorescent counterpart is the pi-acceptor group (COOMe, CN) at the C6 position of the isocoumarin ring. The design of the fluorescent cycloalkyne/triazole pairs is based on the theoretical study of the S1 state deactivation mechanism of the non-fluorescent isocoumarin-fused cycloalkyne IC9O using multi-configurational ab initio and DFT methodologies. The calculations revealed that deactivation proceeds through the electrocyclic ring opening of the α-pyrone cycle and is accompanied by a redistribution of electron density in the fused benzene ring. We proposed that the S1 excited state deactivation barrier could be increased by introducing a pi-acceptor group into a position that is in direct conjugation with the formed C=O group and has a reduced electron density in the transition state. As a proof of concept, we designed and synthesized two fluorescent isocoumarin-fused cycloalkynes IC9O-COOMe and IC9O-CN bearing pi-acceptors at the C6 position. The importance of the nature of a pi-acceptor group was shown by the example of much less fluorescent CF3 -substituted cycloalkyne IC9O-CF3 .

4.
Inorg Chem ; 62(48): 19474-19487, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37983813

RESUMO

Gold(I) complexes of LAu2Cl2 composition based on P2N2 ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp2- or sp3-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The N-aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an N-alkyl substituted ligand with a pyramidal nitrogen atom. The substituents at nitrogen atoms also control the origin of the emission, which is phosphorescence for the N-aryl substituted complex and fluorescence for the N-alkylaryl substituted complex. The phosphorescent gold(I) complex displays high cytotoxicity without selectivity toward the m-HeLa and normal cells, but the core-shell nanoparticles formed on the base of the complex demonstrate reduced cytotoxicity. The luminescence of the NPs allows tracking the complexes in the cell samples.

5.
Molecules ; 28(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903620

RESUMO

Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.

6.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677764

RESUMO

Tertiary diethylpyridylphosphine was synthesized by the reaction of pyridylphosphine with bromoethane in a suberbasic medium. The reaction of phosphine with the copper(I) iodide led to the formation of a copper(I) coordination polymer, which, according to the X-ray diffraction data, has an intermediate structure with a copper-halide core between the octahedral and stairstep geometries of the Cu4I4 clusters. The obtained coordination polymer exhibits a green emission in the solid state, which is caused by the 3(M+X)LCT transitions. The heating up of the copper(I) coordination polymer to 138.5 °C results in its monomerization and the formation of a new solid-state phase. The new phase exhibits a red emission, with the emission band maximum at 725 nm. According to the experimental data and quantum chemical computations, it was concluded that depolymerization probably leads to a complex that is formed with the octahedral structure of the copper-halide core. The resulting solid-state phase can be backward-converted to the polymer phase via recrystallization from the acetone or DMF. Therefore, the obtained coordination polymer can be considered a sensor or detector for the overheating of processes that should be maintained at temperatures below 138 °C (e.g., engines, boiling liquids, solar heat systems, etc.).

7.
Inorg Chem ; 61(42): 16596-16606, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36228314

RESUMO

A synthetic method for a primary 2-(thiophen-2'-yl)ethylphosphine was developed. The reaction of thiophenylethylphosphine with paraformaldehyde and primary arylamines leads to the formation of cyclic bisphosphines, namely, 1,5-di(aryl)-3,7-bis(thiophenylethyl)-1,5-diaza-3,7-diphosphacyclooctane (aryl = phenyl, p-tolyl). The obtained bisphosphines form cationic bis-P,P-chelate complexes with copper(I) tetrafluoroborate, which were structurally characterized by NMR spectroscopy, mass spectrometry, and elemental and XRD analyses. Surprisingly, the copper(I) complexes display a multiband emission in the solid state with maxima at 355-360, 425-430, and 480-490 nm and nanosecond lifetimes (1.2-1.4 ns) upon a 335 nm excitation. The excitation of the complexes at 360 nm at room temperature results in a deep-blue emission at 425-430 nm and a tail at 460-490 nm. A temperature decrease leads to an increased intensity of the emission band at 480 nm, while the luminescence lifetimes insignificantly increased up to 14 ns. Quantum chemical calculations explain the observed unusual luminescent behavior by the existence of "undistorted" and "flattened" singlet excited states of copper(I) complexes at room temperature and at 77 K, respectively.

8.
Nanotechnology ; 33(16)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008067

RESUMO

During last decade luminescence thermometry has become a widely studied research field due to its potential applications for real time contactless temperature sensing where usual thermometers cannot be used. Special attention is paid to the development of accurate and reliable thermal sensors with simple reading. To address existing problems of ratiometric thermometers based on thermally-coupled levels, LuVO4:Nd3+/Yb3+thermal sensors were studied as a proof-of-concept of dual-center thermometer obtained by co-doping or mixture. Both approaches to create a dual-center sensor were compared in terms of energy transfer efficiency, relative sensitivity, and temperature resolution. Effect of excitation mechanism and Yb3+doping concentration on thermometric performances was also investigated. The best characteristics ofSr = 0.34% K-1@298 K and ΔT = 0.2 K were obtained for mixed phosphors upon host excitation.

9.
Nanotechnology ; 34(5)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240676

RESUMO

Single doped CaWO4:Er3+phosphors were synthesized and studied for application of optical thermal sensing within a wide range of 98-773 K. Ratiometric strategy utilizing two luminescence intensity ratios, one between host and Er3+band (LIR1) and second between different Er3+transitions (LIR2), results in self-referencing temperature readouts. The presence of two temperature-dependent parameters could improve thermometric characteristics and broaden the working temperature range compared to a usual single-parameter thermometer. Thermometric performances of prepared samples were evaluated in terms of thermal sensitivities, temperature resolution and repeatability. The highest sensitivity of 2.09% K-1@300 K was found for LIR1, whereas LIR2provided more accurate thermal sensing with a temperature resolution of 0.06-0.1 K. Effect of Er3+doping concentration on sensing properties were studied. The presented findings indicate that CaWO4:Er3+phosphors are perspective in dual-mode thermal sensing with high sensitivity and sub-degree resolution.

10.
Phys Chem Chem Phys ; 24(45): 27940-27948, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373416

RESUMO

In the last decade much attention has been paid to the development of novel approaches in luminescence thermometry, which could allow contactless and noninvasive temperature sensing when traditional thermometers are useless. Typically, an optical thermometer exploits a distinct luminescence parameter to define temperature. However, the use of multimode sensors can significantly broaden the working range and improve the reliability of the temperature measurements. In this work, a Eu3+-doped LaVO4 sample was successfully utilized as a thermal sensor within a wide temperature range of 98-723 K based on monitoring various temperature-sensitive luminescence features. Different thermal sensing strategies were assessed and compared in terms of thermal sensitivity and temperature resolution. The best thermometric performances of the Eu3+-doped LaVO4 sensor reached an Sr = 1.49% K-1 and a ΔT = 0.6 K at room temperature. All the studies performed showed that the LaVO4:Eu3+ phosphor is a prospective multimode optical thermometer.

11.
Phys Chem Chem Phys ; 24(25): 15349-15356, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703368

RESUMO

Crystalline inorganic nanoparticles doped with rare earth ions are widely used in a variety of scientific and industry applications due to the unique spectroscopic properties. The temperature dependence of their luminescence parameters makes them promising candidates for self-referencing thermal sensing. Here we report single phase YVO4 nanoparticles doped with different pairs of rare earth ions (Nd3+/Er3+, Tm3+/Er3+ and Nd3+/Tm3+) for contactless ratiometric thermometry within a wide temperature range of 298-573 K. The presence of dual luminescence centers in the optical thermometer allows one to circumvent the fundamental limitation of sensitivity inherent to thermometers based on thermally coupled levels. Important parameters for temperature sensing, such as relative thermal sensitivity and temperature resolution, were calculated for all synthesized samples and compared with the literature data. The YVO4:Tm3+,Er3+ sample displayed a relative sensitivity of 0.28% K-1 at room temperature, and the YVO4:Nd3+,Er3+ phosphor exhibited a high sensitivity of 0.56% K-1 at 573 K, while YVO4:Nd3+,Tm3+ demonstrated sub-degree thermal resolution. These findings demonstrate the good potential of dual-center ratiometric YVO4 thermometers and open the way toward future enhancement of their thermometric performances through variation of the doping concentration.

12.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144501

RESUMO

A new series of luminescent heterometallic europium(III)-lutetium(III) terephthalate metal-organic frameworks, namely (EuxLu1-x)2bdc3·nH2O, was synthesized using a direct reaction in a water solution. At the Eu3+ concentration of 1-40 at %, the MOFs were formed as a binary mixture of the (EuxLu1-x)2bdc3 and (EuxLu1-x)2bdc3·4H2O crystalline phases, where the Ln2bdc3·4H2O crystalline phase was enriched by europium(III) ions. At an Eu3+ concentration of more than 40 at %, only one crystalline phase was formed: (EuxLu1-x)2bdc3·4H2O. All MOFs containing Eu3+ exhibited sensitization of bright Eu3+-centered luminescence upon the 280 nm excitation into a 1ππ* excited state of the terephthalate ion. The fine structure of the emission spectra of Eu3+ 5D0-7FJ (J = 0-4) significantly depended on the Eu3+ concentration. The luminescence quantum yield of Eu3+ was significantly larger for Eu-Lu terephthalates containing a low concentration of Eu3+ due to the absence of Eu-Eu energy migration and the presence of the Ln2bdc3 crystalline phase with a significantly smaller nonradiative decay rate compared to the Ln2bdc3·4H2O.

13.
Inorg Chem ; 60(9): 6804-6812, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33886298

RESUMO

Synthesis and structural and photophysical characterization of platinum dihalogenide complexes formulated as [PtHal2L2], where Hal = Cl and I, with different 10-(aryl)phenoxarsine ligands such as 10-(p-chlorophenyl)phenoxarsine, 10-(p-tolyl)phenoxarsine, and 10-(phenyl)phenoxarsine are reported. The structures of complexes were determined by NMR spectroscopy, mass spectrometry, and X-ray analysis. Cis/trans isomerism of the complexes in solution was studied by NMR spectroscopy. In the solid state, under UV irradiation, platinum diiodide trans complexes exhibit an intense orange-red emission, which was attributed to a metal halide-centered triplet state. The UV/vis absorption and emission properties were studied and rationalized by density functional theory (DFT) and time-dependent DFT calculations.

14.
Inorg Chem ; 60(7): 5402-5411, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759505

RESUMO

The row of metallocyclic dinuclear gold(I) complexes with cyclic diphosphines, namely, P-pyridylethyl-substituted 1,5-diaza-3,7-diphosphacyclooctanes, has been obtained. Further interaction of the dinuclear gold(I) complexes with copper(I) iodide gave the first examples of hexanuclear AuI/CuI complexes containing two unusual trinuclear AuICu2I2 fragments. The structures of di- and hexanuclear complexes were confirmed by NMR spectroscopy, ESI mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. All of the obtained complexes are moderate emitters in the solid state. Dinuclear gold(I) complexes displayed a greenish emission with the maxima in the emission spectra at ca. 550 nm. The obtained hexanuclear heterobimetallic AuI/CuI complexes are triplet solid-state blue emitters with the maximum in the emission spectra at 463 and 484 nm. According to the TD-DFT calculations, the observed emission of all studied complexes had a triplet origin and was caused by the 3CC or 3(MLCT) T1 → S0 transitions for dinuclear and hexanuclear complexes, respectively.

15.
Molecules ; 26(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34833958

RESUMO

This study focuses on the synthesis of hybrid luminescent polysiloxanes and silicone rubbers grafted by organometallic rhenium(I) complexes using Cu(I)-catalyzed azido-alkyne cycloaddition (CuAAC). The design of the rhenium(I) complexes includes using a diimine ligand to create an MLCT luminescent center and the introduction of a triple C≡C bond on the periphery of the ligand environment to provide click-reaction capability. Poly(3-azidopropylmethylsiloxane-co-dimethylsiloxane) (N3-PDMS) was synthesized for incorporation of azide function in polysiloxane chain. [Re(CO)3(MeCN)(5-(4-ethynylphenyl)-2,2'-bipyridine)]OTf (Re1) luminescent complex was used to prepare a luminescent copolymer with N3-PDMS (Re1-PDMS), while [Re(CO)3Cl(5,5'-diethynyl-2,2'-bipyridine)] (Re2) was used as a luminescent cross-linking agent of N3-PDMS to obtain luminescent silicone rubber (Re2-PDMS). The examination of photophysical properties of the hybrid polymer materials obtained show that emission profile of Re(I) moiety remains unchanged and metallocenter allows to control the creation of polysiloxane-based materials with specified properties.

16.
Inorg Chem ; 59(1): 244-253, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31814406

RESUMO

A flexible bidentate cyclic phosphine, namely, 1,5-bis(p-tolyl)-3,7-bis(pyridin-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP), was used as a template to construct a family of binuclear heteroleptic phosphine alkynyl complexes [PNNP(AuC2R)2], with R = Ph, C6H10OH, C5H8OH, (CH3)2COH, Ph2COH. All complexes obtained were characterized by CHN elemental analysis, NMR spectroscopy, and single-crystal X-ray analysis. It was found that the gold(I) complexes demonstrate a different organization of the crystal structure depending on the nature of the cocrystallized solvent (dichloromethane, acetone, and acetonitrile) because of formation of the supramolecular complexes through hydrogen bonding. These weak interactions appear to determine the conformation, packing, and spatial cooperation of flexible complex molecules that are reflected in the photophysical properties, which were carefully investigated in solution and in the solid state. The complexes demonstrate weak emission in solution at room temperature, and freezing results in blue shifting of the emission, which is accompanied by a significant increase in the luminescence intensity. Being isolated from dichloromethane, all gold(I) complexes exhibit green phosphorescence in the solid state, and the complexes with R = Ph and Ph2COH display substantial variation of their emission color after recrystallization from acetone and acetonitrile, respectively, which manifests itself as a significant bathochromic shift of up to 120 nm. The structural nonrigidity of the gold(I) complexes obtained and its impact on the properties of low-energy excited states were investigated in detail by density functional theory calculations, which indicate the significant role of the structural flexibility of the PNNP ligand in the formation of the low-energy excited states and confirm the impact of rotation of the functional groups in the coordination sphere on the emission properties of complexes.

17.
Phys Chem Chem Phys ; 22(40): 23342-23350, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33043919

RESUMO

Silver molecular clusters were synthesized in photo-thermo-refractive glasses using the Na+-Ag+ ion exchange technique followed by heat treatment. Comprehensive study of cluster emission reveals the presence of spectrally separated fluorescence and phosphorescence with nanosecond and microsecond lifetime. Co-doping of glasses with Eu3+ was shown to results in quenching of cluster luminescence caused by energy transfer. The monitoring of silver cluster luminescence quantum yield and lifetime in the presence of Eu3+ indicates the presence of two different mechanisms of energy transfer. The first one affects the decay kinetics of cluster fluorescence and manifests at long distances, while the second one leads to static quenching of cluster emission at shorter distances and becomes prominent at higher doping Eu3+ concentration.

18.
Molecules ; 25(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327655

RESUMO

Reaction of linear conjugated enynones, 1,5-diarylpent-2-en-4-yn-1-ones, with malononitrile in the presence of lithium diisopropylamide LDA, as a base, in THF at room temperature for 3-7 h resulted in the formation of the product of dimerization, multisubstituted polyfunctional cyclohexanes, 4-aryl-2,6-bis(arylethynyl)-3-(aryloxomethyl)-4-hydroxycyclohexane-1,1-dicarbonitriles, in yields up to 60%. Varying the reaction conditions by decreasing time and temperature and changing the ratio of starting compounds (enynone and malononitrile) allowed isolating some intermediate compounds, which confirmed a plausible reaction mechanism. The relative stability of possible stereoisomers of such cyclohexanes was estimated by quantum chemical calculations (DFT method). The obtained cyclohexanes were found to possess photoluminescent properties.


Assuntos
Alcenos/química , Cicloexanos/síntese química , Nitrilas/química , Propilaminas/química , Catálise , Técnicas de Química Sintética , Dimerização , Humanos , Medições Luminescentes , Estrutura Molecular , Teoria Quântica , Estereoisomerismo , Temperatura
19.
Inorg Chem ; 58(2): 1048-1057, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30601648

RESUMO

The unique L2Cu6I6 complexes containing two Cu3I3 units have been obtained via reaction of 1,5-diaza-3,7-diphosphacyclooctanes bearing ethylpyridyl substituents at phosphorus atoms with an excess of copper iodide. The structure of one of the complexes was confirmed by X-ray diffraction. It was shown that the complexes can exist in two crystalline phases with different parameters of the unit cell, which were detected by the PXRD data analyses. The solvent-free crystalline phases of the complexes display rare solid-state white emission at room temperature, which is observed due to the presence of two broad bands in the emission spectra with maxima at 464 and 610 nm. Quantum chemical computations show that the high-energy band has 3(M+X)LCT origin, whereas the low-energy band is interpreted as 3CC. The quantum yields of white luminescence of complexes reach 15-20%.

20.
Inorg Chem ; 58(12): 7698-7704, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144500

RESUMO

A series of novel charged disilver(I) complexes with pyridyl-containing phospholanes was synthesized. These complexes were characterized using a range of spectroscopic techniques and single-crystal and powder X-ray diffraction. The complexes demonstrate solid-state near-infrared (NIR) luminescence (765-902 nm) that is unique for dinuclear AgI complexes. Combined spectroscopic/quantum chemical analysis suggests that the NIR luminescence of complexes 4-6 in the solid state is mainly due to crystal packing effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA