RESUMO
The mechanism of the association between breast cancer and obesity remains unknown. To investigate this mice over-expressing HER2/Neu in the mammary gland (MMTV-HER2/Neu) were fed either a high-fat diet (45% of calories) (HFD) or low-fat diet (10%) (LFD) from 4 weeks of age and followed for up to 1 year, or sacrificed when a mammary tumor reached 1.5 cm. There was a small but significant increase in body weight on HFD (P < 0.05) and the HFD mice displayed a greater fat mass determined by MRI (P < 0.01). Mild glucose intolerance was observed from 3 months of age on HFD, but insulin levels were not elevated. While the time of onset of a first tumor and tumor growth rates were not altered, mice on HFD had an earlier onset of a second tumor and a twofold greater incidence (LFD 25%, HFD 54%) and a greater absolute number of multiple tumors (tumors/mouse, LFD 1.5 +/- 0.25 vs. HFD 2.7 +/- 0.23, P < 0.01). Consistent with a lack of hyperinsulinemia, immunoblotting of skeletal muscle lysates from mice injected with insulin showed no insulin resistance determined by the phosphorylation of Akt/PKB. Similarly, there was no difference in basal or maximum insulin-stimulated phosphorylation of IRS-1/2, Akt/PKB, or p70 S6K in tumor cell lysates from HFD and LFD groups. Immunohistochemistry revealed no difference in tumor tissue staining for the proliferative marker, Ki67, between diets. These data indicate that HFD, in the absence of significant insulin resistance, mediates a tumor promoting, but not a tumor growth effect in this model of mammary carcinogenesis.