Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 247: 118742, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863962

RESUMO

The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.


Assuntos
Inibição Psicológica , Vias Neurais/fisiopatologia , Dor/fisiopatologia , Adolescente , Adulto , Idoso , Tonsila do Cerebelo/fisiopatologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos Transversais , Feminino , Lobo Frontal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Substância Cinzenta Periaquedutal/fisiopatologia , Descanso , Suíça , Adulto Jovem
2.
Hum Brain Mapp ; 43(5): 1481-1500, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873789

RESUMO

White matter hyperintensities (WMH) of presumed vascular origin are frequently found in MRIs of healthy older adults. WMH are also associated with aging and cognitive decline. Here, we compared and validated three algorithms for WMH extraction: FreeSurfer (T1w), UBO Detector (T1w + FLAIR), and FSL's Brain Intensity AbNormality Classification Algorithm (BIANCA; T1w + FLAIR) using a longitudinal dataset comprising MRI data of cognitively healthy older adults (baseline N = 231, age range 64-87 years). As reference we manually segmented WMH in T1w, three-dimensional (3D) FLAIR, and two-dimensional (2D) FLAIR images which were used to assess the segmentation accuracy of the different automated algorithms. Further, we assessed the relationships of WMH volumes provided by the algorithms with Fazekas scores and age. FreeSurfer underestimated the WMH volumes and scored worst in Dice Similarity Coefficient (DSC = 0.434) but its WMH volumes strongly correlated with the Fazekas scores (rs  = 0.73). BIANCA accomplished the highest DSC (0.602) in 3D FLAIR images. However, the relations with the Fazekas scores were only moderate, especially in the 2D FLAIR images (rs  = 0.41), and many outlier WMH volumes were detected when exploring within-person trajectories (2D FLAIR: ~30%). UBO Detector performed similarly to BIANCA in DSC with both modalities and reached the best DSC in 2D FLAIR (0.531) without requiring a tailored training dataset. In addition, it achieved very high associations with the Fazekas scores (2D FLAIR: rs  = 0.80). In summary, our results emphasize the importance of carefully contemplating the choice of the WMH segmentation algorithm and MR-modality.


Assuntos
Encefalopatias , Leucoaraiose , Substância Branca , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
3.
BJU Int ; 128(5): 586-597, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33547746

RESUMO

OBJECTIVES: To better understand the neuropathophysiology of overactive bladder (OAB) in women by characterising supraspinal activity in response to bladder distention and cold stimulation. SUBJECTS/PATIENTS AND METHODS: We recruited 24 female participants, 12 with OAB (median [interquartile range, IQR] age 40 [32-42] years) and 12 healthy controls (HCs) without lower urinary tract (LUT) symptoms (median [IQR] age 34 [28-44] years), and assessed LUT and cognitive function through neuro-urological examination, 3-day bladder diary, urodynamic investigation, and questionnaires. Functional magnetic resonance (MR) imaging using a 3-T scanner was performed in all participants during automated, repetitive bladder filling and draining (block design) with 100 mL body temperature (37 °C) saline using a MR-compatible and MR-synchronised infusion-drainage device until strong desire to void (HIGH-FILLING/DRAINING) and bladder filling with cold saline (4 °C, i.e. COLD). Whole-brain and region-of-interest analyses were conducted using Statistical Parametric Mapping, version 12. RESULTS: Significant between-group differences were found for 3-day bladder diary variables (i.e. voiding frequency/24 h, P < 0.001; voided volume/void, P = 0.04; and urinary incontinence [UI] episodes/24 h, P = 0.007), questionnaire scores (International Consultation on Incontinence Questionnaire-Female LUT symptoms [overall, filling, and UI scores, all P < 0.001]; the Overactive Bladder Questionnaire short form [symptoms and quality-of-life scores, both P < 0.001]; the Hospital Anxiety and Depression Scale [anxiety P = 0.004 and depression P = 0.003 scores]), as well as urodynamic variables (strong desire to void, P = 0.02; maximum cystometric capacity, P = 0.007; and presence of detrusor overactivity, P = 0.002). Age, weight and cognitive function (i.e. Mini-Mental State Examination, P = 1.0) were similar between groups (P > 0.05). In patients with OAB, the HIGH task elicited activity in the superior temporal gyrus, ventrolateral prefrontal cortex (VLPFC), and mid-cingulate cortex; and the COLD task elicited activity in the VLPFC, cerebellum, and basal ganglia. Compared to HCs, patients with OAB showed significantly stronger cerebellar activity during HIGH-FILLING and significantly less activity in the insula and VLPFC during HIGH-DRAINING. CONCLUSIONS: The present findings suggest a sensory processing and modulation deficiency in our OAB group, probably as part of their underlying pathophysiology, as they lacked activity in essential sensory processing areas, such as the insula. Instead, accessory areas, such as the cerebellum, showed significantly stronger activation compared to HCs, presumably supporting pelvic-floor motor activity to prevent UI. The novel findings of the present study provide physiological evidence of the necessity to consider non-bladder aetiologies of bladder symptoms.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Bexiga Urinária Hiperativa/diagnóstico por imagem , Bexiga Urinária Hiperativa/etiologia , Adulto , Estudos de Casos e Controles , Cognição , Temperatura Baixa , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Testes de Estado Mental e Demência , Solução Salina , Inquéritos e Questionários , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiopatologia , Bexiga Urinária Hiperativa/fisiopatologia , Urodinâmica
4.
J Headache Pain ; 22(1): 8, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657996

RESUMO

BACKGROUND: Migraine is a primary headache disorder that can be classified into an episodic (EM) and a chronic form (CM). Network analysis within the graph-theoretical framework based on connectivity patterns provides an approach to observe large-scale structural integrity. We test the hypothesis that migraineurs are characterized by a segregated network. METHODS: 19 healthy controls (HC), 17 EM patients and 12 CM patients were included. Cortical thickness and subcortical volumes were computed, and topology was analyzed using a graph theory analytical framework and network-based statistics. We further used support vector machines regression (SVR) to identify whether these network measures were able to predict clinical parameters. RESULTS: Network based statistics revealed significantly lower interregional connectivity strength between anatomical compartments including the fronto-temporal, parietal and visual areas in EM and CM when compared to HC. Higher assortativity was seen in both patients' group, with higher modularity for CM and higher transitivity for EM compared to HC. For subcortical networks, higher assortativity and transitivity were observed for both patients' group with higher modularity for CM. SVR revealed that network measures could robustly predict clinical parameters for migraineurs. CONCLUSION: We found global network disruption for EM and CM indicated by highly segregated network in migraine patients compared to HC. Higher modularity but lower clustering coefficient in CM is suggestive of more segregation in this group compared to EM. The presence of a segregated network could be a sign of maladaptive reorganization of headache related brain circuits, leading to migraine attacks or secondary alterations to pain.


Assuntos
Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Encéfalo/diagnóstico por imagem , Cefaleia , Humanos , Transtornos de Enxaqueca/diagnóstico por imagem
5.
Acta Oncol ; 59(11): 1357-1364, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32686979

RESUMO

PURPOSE: To assess the relationship between F-18-fluoro-ethyl-tyrosine positron emission tomography (FET-PET) parameters of relapsing oligodendroglioma and progression-free survival. MATERIAL AND METHODS: The relationship of clinical parameters, FET-PET parameters (SUVmax, TBRmax, BTV, time-activity curves) and progression-free survival was analyzed using univariate and multivariate analysis in 42 adult patients with relapsing oligodendroglioma. Kaplan-Meier analysis was used to assess survival. RESULTS: Patients who did not undergo surgical resection of their relapsing tumor had significantly lower PFS if the tumor exhibited an SUVmax above 3.40 than those with an SUVmax below 3.40 (13.1 ± 2.3 months vs. 47.3 ± 6.0 months, respectively, p < .001). Patients who underwent surgery had similar PFS as the aforementioned non-operated patients with low SUVmax (53.6 ± 6.7 months, p = .948). The same was true for TBRmax using a threshold of 3.03 (PFS 12.5 ± 2.4 months vs. 44.0 ± 6.3 months / 53.6 ± 6.7 months, respectively; p < .001 / p = .825). Also, subjects with BTV below 10 cm3 that did not undergo surgery had a similar PFS as subjects who underwent surgery (40.2 ± 6.0 months vs. 52.4 ± 8.9 months, respectively, p = .587). Subjects with BTV above 10 cm3 and without surgery had a significantly worse PFS (13.8 ± 3.3 months, p < .001). Multivariate analysis showed that the prognostication by clinical parameters is improved by adding TBRmax to the model (AUC 0.945 (95% CI: 0.881-1.000), true classification rate 88.1%). CONCLUSION: FET-PET may provide added value for the prognostication of relapsing oligodendroglioma in addition to clinical parameters.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Humanos , Recidiva Local de Neoplasia/diagnóstico por imagem , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/cirurgia , Tomografia por Emissão de Pósitrons , Prognóstico , Tirosina
6.
Neuroimage ; 191: 481-492, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776530

RESUMO

Previous functional neuroimaging studies provided evidence for a specific supraspinal network involved in lower urinary tract (LUT) control. However, data on the reliability of blood oxygenation level-dependent (BOLD) signal changes during LUT task-related functional magnetic resonance imaging (fMRI) across separate measurements are lacking. Proof of the latter is crucial to evaluate whether fMRI can be used to assess supraspinal responses to LUT treatments. Therefore, we prospectively assessed task-specific supraspinal responses from 20 healthy participants undergoing two fMRI measurements (test-retest) within 5-8 weeks. The fMRI measurements, conducted in a 3T magnetic resonance (MR) scanner, comprised a block design of repetitive bladder filling and drainage using an automated MR-compatible and MR-synchronized infusion-drainage device. Following transurethral catheterization and bladder pre-filling with body warm saline until participants perceived a persistent desire to void (START condition), fMRI was recorded during repetitive blocks (each 15 s) of INFUSION and WITHDRAWAL of 100 mL body warm saline into respectively from the bladder. BOLD signal changes were calculated for INFUSION minus START. In addition to whole brain analysis, we assessed BOLD signal changes within multiple 'a priori' region of interest (ROI), i.e. brain areas known to be involved in the LUT control from previous literature. To evaluate reliability of the fMRI results between visits, we applied different types of analyses: coefficient of variation (CV), intraclass correlation coefficient (ICC), Sørensen-Dice index, Bland-Altman method, and block-wise BOLD signal comparison. All participants completed the study without adverse events. The desire to void was rated significantly higher for INFUSION compared to START or WITHDRAWAL at both measurements without any effect of visit. At whole brain level, significant (p < 0.05, cluster corrected, k ≥ 41 voxels) BOLD signal changes were found for the contrast INFUSION compared to START in several brain areas. Overlap of activation maps from both measurements were observed in the orbitofrontal cortex, insula, ventrolateral prefrontal cortex (VLPFC), and inferior parietal lobe. The two highest ICCs, based on a ROI's mean beta weight, were 0.55 (right insular cortex) and 0.47 (VLPFC). Spatial congruency (Sørensen-Dice index) of all voxels within each ROI between measurements was highest in the insular cortex (left 0.55, right 0.44). In addition, the mean beta weight of the right insula and right VLPFC demonstrated the lowest CV and narrowest Bland and Altman 95% limits of agreement. In conclusion, the right insula and right VLPFC were revealed as the two most reliable task-specific ROIs using our automated, MR-synchronized protocol. Achieving high reliability using a viscero-sensory/interoceptive task such as repetitive bladder filling remains challenging and further endeavour is highly warranted to better understand which factors influence fMRI outcomes and finally to assess LUT treatment effects on the supraspinal level.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Bexiga Urinária/inervação , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Radiology ; 291(1): 131-138, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30694162

RESUMO

Purpose To investigate metabolic changes in chronic spinal cord injury (SCI) by applying MR spectroscopy in the cervical spinal cord. Materials and Methods Single-voxel short-echo spectroscopic data in study participants with chronic SCI and healthy control subjects were prospectively acquired in the cervical spinal cord at C2 above the level of injury between March 2016 and January 2017 and were compared between groups. Concentrations of total N-acetylaspartate (tNAA), myo-inositol (mI), total choline-containing compounds (tCho), creatine, and glutamine and glutamate complex were estimated from the acquired spectra. Participants were assessed with a comprehensive clinical evaluation investigating sensory and motor deficits. Correlation analysis was applied to investigate relationships between observed metabolic differences, lesion severity, and clinical outcome. Results There were 18 male study participants with chronic SCI (median age, 51 years; range, 30-68 years) and 11 male healthy control subjects (median age, 45 years; range, 30-67 years). At cervical level C2, tNAA/mI and tCho/mI ratios were lower in participants with SCI (tNAA/mI: -26%, P = .003; tCho/mI: -18%; P = .04) than in healthy control subjects. The magnitude of difference was greater with the severity of cord atrophy (tNAA/mI: R2 = 0.44, P = .003; tCho/mI: R2 = 0.166, P = .09). Smaller tissue bridges at the lesion site correlated with lower ratios of tNAA/mI (R2 = 0.69, P = .006) and tCho/mI (R2 = 0.51, P = .03) at the C2 level. Lower tNAA/mI and tCho/mI ratios were associated with worse sensory and motor outcomes (P < .05). Conclusion Supralesional metabolic alterations are observed in chronic spinal cord injury, likely reflecting neurodegeneration, demyelination, and astrocytic gliosis in the injured cervical cord. Lesion severity and greater clinical impairment are both linked to the biochemical changes in the atrophied cervical cord after spinal cord injury. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Lin in this issue.


Assuntos
Vértebras Cervicais/patologia , Espectroscopia de Ressonância Magnética/métodos , Traumatismos da Medula Espinal/patologia , Adulto , Idoso , Atrofia/patologia , Estudos de Casos e Controles , Doença Crônica , Humanos , Espectroscopia de Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Paraplegia/patologia , Quadriplegia/patologia
8.
Headache ; 59(10): 1808-1820, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31680242

RESUMO

BACKGROUND: Migraine pathophysiology is complex and probably involves cortical and subcortical alterations. Structural and functional brain imaging studies indicate alterations in the higher order visual cortex in patients with migraine. Arterial spin labeling magnetic resonance imaging (ASL-MRI) is a non-invasive imaging method for assessing changes in cerebral blood flow (CBF) in vivo. OBJECTIVE: To examine if interictal CBF differs between patients with episodic migraine (EM) with or without aura and healthy controls (HC). METHODS: We assessed interictal CBF using 2D pseudo-continuous ASL-MRI on a 3 Tesla Philips scanner (University Hospital Zurich, Switzerland) in EM (N = 17, mean age 32.7 ± 9.9, 13 females) and HC (N = 19, mean age 31.0 ± 9.3, 11 females). RESULTS: Compared to HC, EM showed exclusively hyperperfusion in the right MT+ and Cohen's d effect size was 0.99 (HC mean CBF ± SD: 33.1 ± 5.9 mL/100 g/minutes; EM mean CBF: 40.9 ± 9.4 mL/100 g/minutes). EM with aura (N = 13, MwA) revealed hyperperfusion compared to HC in the right MT+ and superior temporal gyrus. For MT, Cohen's d effect size was 1.34 (HC mean CBF ± SD: 33.1 ± 5.9 mL/100 g/minutes; MwA mean CBF: 43.3 ± 8.6 mL/100 g/minutes). For the superior temporal gyrus, Cohen's d effect size was 1.28 (HC mean CBF ± SD: 40.1 ± 4.9 mL/100 g/minutes; MwA mean CBF: 47.4 ± 6.4 mL/100 g/minutes). In EM, anxiety was positively associated with CBF in the parietal operculum and angular gyrus. CONCLUSIONS: Our results suggest that extrastriate brain regions probably involved in cortical spreading depression are associated with CBF changes in the interictal state. We conclude that ASL-MRI is a sensitive method to identify local neuro-functional abnormalities in CBF in patients with EM in the interictal state.


Assuntos
Circulação Cerebrovascular/fisiologia , Transtornos de Enxaqueca/fisiopatologia , Córtex Visual/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin , Adulto Jovem
9.
Neuroimage ; 173: 332-340, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501553

RESUMO

Peripheral encoding of movement kinematics has been well-characterized, but there is little understanding of the relationship between movement kinematics and associated brain activation. We hypothesized that kinematics of passive movement is differentially represented in the sensorimotor network, reflecting the well-studied afferent responses to movement. A robotic forefinger manipulandum was used to induce passive kinematic stimuli and monitor interaction force in 41 healthy participants during whole-brain functional magnetic resonance imaging (fMRI). Levels of forefinger displacement amplitude and velocity were presented in flexion and extension. Increases in velocity were linearly associated with activation in contralateral primary somatosensory cortex (S1), bilateral secondary somatosensory cortex (S2), primary motor cortex, and supplementary motor area. No difference in activation was found for direction of the finger movement. Unexpectedly, S1 and S2 activation decreased nonlinearly with increasing displacement amplitude. We conclude that while straightforward relations were found with velocity, the complex neural representation of displacement amplitude suggests a more nuanced relationship between peripheral responses to kinematic stimuli and sensorimotor network activity. Here we present a novel, systematic characterization of the whole-brain response to passive movement kinematics.


Assuntos
Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Fenômenos Biomecânicos , Mapeamento Encefálico/métodos , Feminino , Dedos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
10.
Eur J Neurosci ; 45(10): 1241-1251, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27646656

RESUMO

Aß deposition is a driving force of Alzheimer's disease pathology and can be detected early by amyloid positron emission tomography. Identifying presymptomatic structural brain changes associated with Aß deposition might lead to a better understanding of its consequences and provide early diagnostic information. In this respect we analyzed measures of cortical thickness and subcortical volumes along with hippocampal, thalamic and striatal shape and surface area by applying novel analysis strategies for structural magnetic resonance imaging. We included 69 cognitively normal elderly subjects after careful clinical and neuropsychological workup. Standardized uptake value ratios (cerebellar reference) for uptake of 11-C-Pittsburgh Compound B (PiB) were calculated from positron emission tomographic data for a cortical measurement and for bilateral hippocampus, thalamus and striatum. Associations to shape, surface area, volume and cortical thickness were tested using regression models that included significant predictors as covariates. Left anterior hippocampal shape was associated with regional PiB uptake (P < 0.05, FDR corrected), whereas volumes of the hippocampi and their subregions were not associated with cortical or regional PiB uptake (all P > 0.05, FDR corrected). Within the entorhinal cortical region of both hemispheres, thickness was negatively associated with cortical PiB uptake (P < 0.05, FDR corrected). Hence, localized shape measures and cortical thickness may be potential biomarkers of presymptomatic Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina , Benzotiazóis , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tiazóis
11.
Cephalalgia ; 37(8): 764-779, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27250235

RESUMO

Background Neuroimaging studies revealed structural and functional changes in medication-overuse headache (MOH), but it remains unclear whether similar changes could be observed in other chronic pain disorders. Methods In this cross-sectional study, we investigated functional connectivity (FC) with resting-state functional magnetic resonance imaging (fMRI) and white matter integrity using diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) and mean diffusivity (MD) in patients with MOH ( N = 12) relative to two control groups: patients with chronic myofascial pain (MYO; N = 11) and healthy controls (CN; N = 16). Results In a data-driven approach we found hypoconnectivity in the fronto-parietal attention network in both pain groups relative to CN (i.e. MOH < CN and MYO < CN). In contrast, hyperconnectivity in the saliency network (SN) was detected only in MOH, which correlated with FA in the insula. In a seed-based analysis we investigated FC between the periaqueductal grey (PAG) and all other brain regions. In addition to overlapping hyperconnectivity seen in patient groups (relative to CN), MOH had a distinct connectivity pattern with lower FC to parieto-occipital regions and higher FC to orbitofrontal regions compared to controls. FA and MD abnormalities were mostly observed in MOH, involving the insula. Conclusions Hyperconnectivity within the SN along with associated white matter changes therein suggest a particular role of this network in MOH. In addition, abnormal connectivity between the PAG and other pain modulatory (frontal) regions in MOH are consistent with dysfunctional central pain control.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos da Cefaleia Secundários/diagnóstico por imagem , Síndromes da Dor Miofascial/diagnóstico por imagem , Adulto , Idoso , Encéfalo/patologia , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Transtornos da Cefaleia Secundários/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Síndromes da Dor Miofascial/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
12.
BJU Int ; 119(2): 305-316, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27617867

RESUMO

OBJECTIVE: To evaluate the applicability and precision of a novel infusion-drainage device (IDD) for standardized filling paradigms in neuro-urology and functional magnetic resonance imaging (fMRI) studies of lower urinary tract (LUT) function/dysfunction. SUBJECTS/PATIENTS AND METHODS: The IDD is based on electrohydrostatic actuation which was previously proven feasible in a prototype setup. The current design includes hydraulic cylinders and a motorized slider to provide force and motion. Methodological aspects have been assessed in a technical application laboratory as well as in healthy subjects (n=33) and patients with LUT dysfunction (n=3) undergoing fMRI during bladder stimulation. After catheterization, the bladder was pre-filled until a persistent desire to void was reported by each subject. The scan paradigm comprised automated, repetitive bladder filling and withdrawal of 100 mL body warm (37 °C) saline, interleaved with rest and sensation rating. Neuroimaging data were analysed using Statistical Parametric Mapping version 12 (SMP12). RESULTS: Volume delivery accuracy was between 99.1±1.2% and 99.9±0.2%, for different flow rates and volumes. Magnetic resonance (MR) compatibility was demonstrated by a small decrease in signal-to-noise ratio (SNR), i.e. 1.13% for anatomical and 0.54% for functional scans, and a decrease of 1.76% for time-variant SNR. Automated, repetitive bladder-filling elicited robust (P = 0.05, family-wise error corrected) brain activity in areas previously reported to be involved in supraspinal LUT control. There was a high synchronism between the LUT stimulation and the blood oxygenation level-dependent (BOLD) signal changes in such areas. CONCLUSION: We were able to develop an MR-compatible and MR-synchronized IDD to routinely stimulate the LUT during fMRI in a standardized manner. The device provides LUT stimulation at high system accuracy resulting in significant supraspinal BOLD signal changes in interoceptive and LUT control areas in synchronicity to the applied stimuli. The IDD is commercially available, portable and multi-configurable. Such a device may help to improve precision and standardization of LUT tasks in neuro-imaging studies on supraspinal LUT control, and may therefore facilitate multi-site studies and comparability between different LUT investigations in the future.


Assuntos
Técnicas de Diagnóstico Urológico/instrumentação , Drenagem/instrumentação , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiopatologia , Adulto , Desenho de Equipamento , Feminino , Humanos , Masculino
13.
NMR Biomed ; 29(10): 1464-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27580498

RESUMO

MRS enables insight into the chemical composition of central nervous system tissue. However, technical challenges degrade the data quality when applied to the human spinal cord. Therefore, to date detection of only the most prominent metabolite resonances has been reported in the healthy human spinal cord. The aim of this investigation is to provide an extended metabolic profile including neurotransmitters and antioxidants in addition to metabolites involved in the energy and membrane metabolism of the human cervical spinal cord in vivo. To achieve this, data quality was improved by using a custom-made, cervical detector array together with constructive averaging of a high number of echo signals, which is enabled by the metabolite cycling technique at 3T. In addition, the improved spinal cord spectra were extensively cross-validated, in vivo, post-mortem in situ and ex vivo. Reliable identification of up to nine metabolites was achieved in group analyses for the first time. Distinct features of the spinal cord neurochemical profile, in comparison with the brain neurotransmission system, include decreased concentrations of the sum of glutamate and glutamate and increased concentrations of aspartate, γ-amino-butyric acid, scyllo-inositol and the sum of myo-inositol and glycine.


Assuntos
Algoritmos , Antioxidantes/metabolismo , Medula Cervical/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Neurotransmissores/metabolismo , Adulto , Medula Cervical/anatomia & histologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador/instrumentação
14.
Brain Topogr ; 29(1): 193-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26206204

RESUMO

To date, the neurophysiological correlates of muscle activation required for weight bearing during walking are poorly understood although, a supraspinal involvement has been discussed in the literature for many years. The present study investigates the effect of simulated ground reaction forces (0, 20, and 40% of individual body weight) on brain activation in sixteen healthy participants. A magnetic resonance compatible robot was applied to render three different levels of load against the feet of the participants during active and passive gait-like stepping movements. Brain activation was analyzed by the means of voxel-wise whole brain analysis as well as by a region-of-interest analysis. A significant modulation of brain activation in sensorimotor areas by the load level could neither be demonstrated during active nor during passive stepping. These observations suggest that the regulation of muscle activation under different weight-bearing conditions during stepping occurs at the level of spinal circuitry or the brainstem rather than at the supraspinal level.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Marcha/fisiologia , Movimento/fisiologia , Suporte de Carga/fisiologia , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Neuroimagem , Adulto Jovem
15.
Cereb Cortex ; 25(10): 3369-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24969474

RESUMO

Despite the crucial role of the brain in the control of the human lower urinary tract, little is known about the supraspinal mechanisms regulating micturition. To investigate the central regulatory mechanisms activated during micturition initiation and actual micturition, we used an alternating sequence of micturition imitation/imagination, micturition initiation, and actual micturition in 22 healthy males undergoing functional magnetic resonance imaging. Subjects able to micturate (voiders) showed the most prominent supraspinal activity during the final phase of micturition initiation whereas actual micturition was associated with significantly less such activity. Initiation of micturition in voiders induced significant activity in the brainstem (periaqueductal gray, pons), insula, thalamus, prefrontal cortex, parietal operculum and cingulate cortex with significant functional connectivity between the forebrain and parietal operculum. Subjects unable to micturate (nonvoiders) showed less robust activation during initiation of micturition, with activity in the forebrain and brainstem particularly lacking. Our findings suggest that micturition is controlled by a specific supraspinal network which is essential for the voluntary initiation of micturition. Once this network triggers the bulbospinal micturition reflex via brainstem centers, micturition continues automatically without further supraspinal input. Unsuccessful micturition is characterized by a failure to activate the periaqueductal gray and pons during initiation.


Assuntos
Encéfalo/fisiologia , Micção/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Humanos , Imaginação/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Urina/fisiologia , Adulto Jovem
16.
Malays J Med Sci ; 23(5): 91-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27904430

RESUMO

Multiple sclerosis (MS) patients treated with natalizumab often face the uncommon but severe complication of developing progressive multifocal leukoencephalopathy (PML). PML may be further complicated by immune reconstitution inflammatory syndrome (IRIS) after the removal of the drug. Since both PML and IRIS are associated with high morbidity and mortality rates, early clinical and radiological diagnosis of these complications is of paramount importance. Here, we report a case of an adult male patient who was diagnosed with PML after receiving natalizumab therapy for 6 years for the treatment of MS. Upon cessation of natalizumab, he presented with a paradoxical worsening of clinical and radiological findings consistent with an inflammatory brain injury due to IRIS. He was treated with high dose corticosteroid therapy followed by a gradual improvement in clinical and imaging findings. This article illustrates the magnetic resonance imaging (MRI) features of natalizumab-associated PML-IRIS, along with a brief overview of its clinical features, complications and management strategies.

17.
Hum Brain Mapp ; 36(11): 4438-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26249369

RESUMO

Influential theories of brain-viscera interactions propose a central role for interoception in basic motivational and affective feeling states. Recent neuroimaging studies have underlined the insula, anterior cingulate, and ventral prefrontal cortices as the neural correlates of interoception. However, the relationships between these distributed brain regions remain unclear. In this study, we used spatial independent component analysis (ICA) and functional network connectivity (FNC) approaches to investigate time course correlations across the brain regions during visceral interoception. Functional magnetic resonance imaging (fMRI) was performed in thirteen healthy females who underwent viscerosensory stimulation of bladder as a representative internal organ at different prefill levels, i.e., no prefill, low prefill (100 ml saline), and high prefill (individually adapted to the sensations of persistent strong desire to void), and with different infusion temperatures, i.e., body warm (∼37°C) or ice cold (4-8°C) saline solution. During Increased distention pressure on the viscera, the insula, striatum, anterior cingulate, ventromedial prefrontal cortex, amygdalo-hippocampus, thalamus, brainstem, and cerebellar components showed increased activation. A second group of components encompassing the insula and anterior cingulate, dorsolateral prefrontal and posterior parietal cortices and temporal-parietal junction showed increased activity with innocuous temperature stimulation of bladder mucosa. Significant differences in the FNC were found between the insula and amygdalo-hippocampus, the insula and ventromedial prefrontal cortex, and the ventromedial prefrontal cortex and temporal-parietal junction as the distention pressure on the viscera increased. These results provide new insight into the supraspinal processing of visceral interoception originating from an internal organ.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Interocepção/fisiologia , Rede Nervosa/fisiologia , Bexiga Urinária/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
18.
Mol Phylogenet Evol ; 83: 72-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462995

RESUMO

Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders.


Assuntos
Evolução Biológica , Filogenia , Rajidae/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , Fósseis , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA
19.
J Comput Assist Tomogr ; 39(2): 213-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786092

RESUMO

OBJECTIVE: This study aimed to investigate whether and to what degree leptomeningeal collateral flow as detected on angiography influences the prognostic value of computed tomography perfusion-estimated mismatch in interventional treatment of acute anterior circulation stroke. METHODS: Thirty-eight consecutive patients with acute anterior circulation stroke who received interventional neuroradiologic treatment were assigned one of 2 groups depending on the patient's degree of collateral flow (18 patients with poor collaterals, 20 patients with high degree collaterals) according to the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology grading system. In a multiregression model, we investigated a possible interaction between 2 independent variables mismatch ratio and degree of collateral flow using a "centered" variable approach. RESULTS: The mismatch ratio per se showed a significant correlation with final clinical outcome (ß coefficient, -0.79; P = 0.02); whereas, there was no interaction shown between mismatch degree of collateral flow (ß coefficient, 0.54; P = 0.1). CONCLUSIONS: This study suggests that the predictive value of computed tomography perfusion-estimated mismatch is not influenced by the degree of leptomeningeal collateral flow.


Assuntos
Circulação Cerebrovascular , Meninges/irrigação sanguínea , Acidente Vascular Cerebral/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Trombectomia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
20.
J Neuroeng Rehabil ; 12: 102, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26577598

RESUMO

BACKGROUND: Brain activity has been shown to undergo cortical and sub-cortical functional reorganisation over the course of gait rehabilitation in patients suffering from a spinal cord injury or a stroke. These changes however, have not been completely elucidated by neuroimaging to date, mainly due to the scarcity of long-term, follow-up investigations. The magnetic resonance imaging (MRI) compatible stepper MARCOS was specifically developed to enable the investigation of the supraspinal adaptations in paretic patients undergoing gait-rehabilitation in a controlled and repeatable manner. In view of future clinical research, the present study aims at examining the test-retest reliability of functional MRI (fMRI) experiments using MARCOS. METHODS: The effect of repeated active and passive stepping movements on brain activity was investigated in 16 healthy participants from fMRI data collected in two separate imaging sessions six weeks apart. Root mean square errors (RMSE) were calculated for the metrics of motor performance. Regional overlap of brain activation between sessions, as well as an intra-class correlation coefficient (ICC) was computed from the single-subject and group activation maps for five regions of interest (ROI). RESULTS: Data from eight participants had to be excluded due to excessive head motion. Reliability of motor performance was higher during passive than active movements, as seen in 4.5- to 13-fold lower RMSE for passive movements. In contrast, ICC ranged from 0.48 to 0.72 during passive movements and from 0.77 to 0.85 during active movements. Regional overlap of activations was also higher during active than during passive movements. CONCLUSION: These findings imply that an increased variability of motor performance during active movements of healthy participants may be associated with a stable neuronal activation pattern across repeated measurements. In contrast, a stable motor performance during passive movements may be accompanied by a confined reliability of brain activation across repeated measurements.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Atividade Motora/fisiologia , Robótica/instrumentação , Idoso , Artefatos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA