RESUMO
We identified a progenitor cell population highly enriched in samples from invasive and chemo-resistant carcinomas, characterized by a well-defined multigene signature including APOD, DCN, and LUM. This cell population has previously been labeled as consisting of inflammatory cancer-associated fibroblasts (iCAFs). The same signature characterizes naturally occurring fibro-adipogenic progenitors (FAPs) as well as stromal cells abundant in normal adipose tissue. Our analysis of human gene expression databases provides evidence that adipose stromal cells (ASCs) are recruited by tumors and undergo differentiation into CAFs during cancer progression to invasive and chemotherapy-resistant stages.
Assuntos
Adipogenia , Humanos , Animais , Carcinoma/patologia , Carcinoma/genética , Carcinoma/metabolismo , Células-Tronco/patologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/patologia , Neoplasias/patologia , Neoplasias/genéticaRESUMO
The relative abundance of thermogenic beige adipocytes and lipid-storing white adipocytes in adipose tissue underlie its metabolic activity. The roles of adipocyte progenitor cells, which express PDGFRα or PDGFRß, in adipose tissue function have remained unclear. Here, by defining the developmental timing of PDGFRα and PDGFRß expression in mouse subcutaneous and visceral adipose depots, we uncover depot specificity of pre-adipocyte delineation. We demonstrate that PDGFRα expression precedes PDGFRß expression in all subcutaneous but in only a fraction of visceral adipose stromal cells. We show that high-fat diet feeding or thermoneutrality in early postnatal development can induce PDGFRß+ lineage recruitment to generate white adipocytes. In contrast, the contribution of PDGFRß+ lineage to beige adipocytes is minimal. We provide evidence that human adipose tissue also contains distinct progenitor populations differentiating into beige or white adipocytes, depending on PDGFRß expression. Based on PDGFRα or PDGFRß deletion and ectopic expression experiments, we conclude that the PDGFRα/PDGFRß signaling balance determines progenitor commitment to beige (PDGFRα) or white (PDGFRß) adipogenesis. Our study suggests that adipocyte lineage specification and metabolism can be modulated through PDGFR signaling.
Assuntos
Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Adipócitos Bege/citologia , Adipócitos Brancos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Humanos , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Células-Tronco/citologiaRESUMO
PURPOSE: The purpose of this review is to clarify the association of body composition with breast cancer risk and treatment, including physiological mechanisms, and to elucidate strategies for overcoming unfavorable body composition changes that relate to breast cancer progression. METHODS: We have summarized updated knowledge regarding the mechanism of the negative association of altered body composition with breast cancer risk and treatment. We also review strategies for reversing unfavorable body composition based on the latest clinical trial results. RESULTS: Body composition changes in patients with breast cancer typically occur during menopause or as a result of chemotherapy or endocrine therapy. Dysfunction of visceral adipose tissue (VAT) in the setting of obesity underlies insulin resistance and chronic inflammation, which can lead to breast cancer development and progression. Insulin resistance and chronic inflammation are also observed in patients with breast cancer who have sarcopenia or sarcopenic obesity. Nutritional support and a personalized exercise program are the fundamental interventions for reversing unfavorable body composition. Other interventions that have been explored in specific situations include metformin, testosterone, emerging agents that directly target the adipocyte microenvironment, and bariatric surgery. CONCLUSIONS: A better understanding of the biology of body composition phenotypes is key to determining the best intervention program for patients with breast cancer.
Assuntos
Neoplasias da Mama , Sarcopenia , Composição Corporal , Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Feminino , Humanos , Músculo Esquelético/patologia , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/patologia , Sarcopenia/patologia , Microambiente TumoralRESUMO
Although the lack of dystrophin expression in muscle myofibers is the central cause of Duchenne muscular dystrophy (DMD), accumulating evidence suggests that DMD may also be a stem cell disease. Recent studies have revealed dystrophin expression in satellite cells and demonstrated that dystrophin deficiency is directly related to abnormalities in satellite cell polarity, asymmetric division, and epigenetic regulation, thus contributing to the manifestation of the DMD phenotype. Although metabolic and mitochondrial dysfunctions have also been associated with the DMD pathophysiology profile, interestingly, the role of dystrophin with respect to stem cells dysfunction has not been elucidated. In the past few years, editing of the gene that encodes dystrophin has emerged as a promising therapeutic approach for DMD, although the effects of dystrophin restoration in stem cells have not been addressed. Herein, we describe our use of a clustered regularly interspaced short palindromic repeats/Cas9-based system to correct the dystrophin mutation in dystrophic (mdx) muscle progenitor cells (MPCs) and show that the expression of dystrophin significantly improved cellular properties of the mdx MPCs in vitro. Our findings reveal that dystrophin-restored mdx MPCs demonstrated improvements in cell proliferation, differentiation, bioenergetics, and resistance to oxidative and endoplasmic reticulum stress. Furthermore, our in vivo studies demonstrated improved transplantation efficiency of the corrected MPCs in the muscles of mdx mice. Our results indicate that changes in cellular energetics and stress resistance via dystrophin restoration enhance muscle progenitor cell function, further validating that dystrophin plays a role in stem cell function and demonstrating the potential for new therapeutic approaches for DMD. Stem Cells 2019;37:1615-1628.
Assuntos
Distrofina/genética , Terapia Genética/métodos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/terapia , Células Satélites de Músculo Esquelético/patologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Polaridade Celular/fisiologia , Proliferação de Células/genética , Modelos Animais de Doenças , Distrofina/metabolismo , Estresse do Retículo Endoplasmático/genética , Metabolismo Energético/genética , Epigênese Genética , Edição de Genes , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Estresse Oxidativo/genética , Células-Tronco/fisiologiaRESUMO
Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.
Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismoRESUMO
Prostate cancer antigen 3 (PCA3) is the most specific prostate cancer biomarker but its function remains unknown. Here we identify PRUNE2, a target protein-coding gene variant, which harbors the PCA3 locus, thereby classifying PCA3 as an antisense intronic long noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels via a unique regulatory mechanism involving formation of a PRUNE2/PCA3 double-stranded RNA that undergoes adenosine deaminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA editing. PRUNE2 expression or silencing in prostate cancer cells decreased and increased cell proliferation, respectively. Moreover, PRUNE2 and PCA3 elicited opposite effects on tumor growth in immunodeficient tumor-bearing mice. Coregulation and RNA editing of PRUNE2 and PCA3 were confirmed in human prostate cancer specimens, supporting the medical relevance of our findings. These results establish PCA3 as a dominant-negative oncogene and PRUNE2 as an unrecognized tumor suppressor gene in human prostate cancer, and their regulatory axis represents a unique molecular target for diagnostic and therapeutic intervention.
Assuntos
Antígenos de Neoplasias/genética , Íntrons/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Células MCF-7 , Masculino , Camundongos SCID , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Adipose stromal cells (ASC) are mesenchymal adipocyte progenitors that reside in the peri-endothelium of fat tissue. ASC mobilization and migration accompany white adipose tissue (WAT) remodeling and pathological conditions. Mechanisms regulating ASC trafficking are largely unknown. We previously reported that binding of the matricellular protein secreted protein acidic and rich in cysteine (SPARC) to ß1 integrin on ASC surface induces their motility. Here, we show that SPARC is required for ASC mobilization. We report two SPARC proteolytic isoforms, C-SPARC (lacking the N terminus) and N-SPARC (lacking the C terminus), generated in mesenteric WAT of obese mice. C-SPARC, but not N-SPARC, binds to ß1 integrin on ASC, while N-SPARC preferentially binds to the extracellular matrix (ECM) and blocks ECM/integrin interaction. Interestingly, both C-SPARC and N-SPARC induce ASC deadhesion from the ECM, which is associated with modulation of integrin-dependent FAK-ERK signaling and integrin-independent ILK-Akt signaling. We show that these SPARC isoforms, acting on ASC through distinct mechanisms, have an additive effect in inducing ASC migration.
Assuntos
Tecido Adiposo/patologia , Obesidade/metabolismo , Obesidade/patologia , Osteonectina/metabolismo , Proteólise , Células 3T3-L1 , Sequência de Aminoácidos , Animais , Adesão Celular , Movimento Celular , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Humanos , Integrina alfa5 , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Dados de Sequência Molecular , Osteonectina/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células Estromais/metabolismoRESUMO
Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments.
Assuntos
Tecido Adiposo/citologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Peptídeos/administração & dosagem , Animais , Transplante de Medula Óssea , Carcinoma Pulmonar de Lewis/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma Experimental/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Peptídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacosRESUMO
Endotrophin is a cleavage product of collagen 6 (Col6) in adipose tissue (AT). Previously, we demonstrated that endotrophin serves as a costimulator to trigger fibrosis and inflammation within the unhealthy AT milieu. However, how endotrophin affects lipid storage and breakdown in AT and how different cell types in AT respond to endotrophin stimulation remain unknown. In the current study, by using a doxycycline-inducible mouse model, we observed significant upregulation of adipogenic genes in the white AT (WAT) of endotrophin transgenic mice. We further showed that the mice exhibited inhibited lipolysis and accelerated hypertrophy and hyperplasia in WAT. To investigate the effects of endotrophin in vitro, we incubated different cell types from AT with conditioned medium from endotrophin-overexpressing 293T cells. We found that endotrophin activated multiple pathological pathways in different cell types. Particularly in 3T3-L1 adipocytes, endotrophin triggered a fibrotic program by upregulating collagen genes and promoted abnormal lipid accumulation by downregulating hormone-sensitive lipolysis gene and decreasing HSL phosphorylation levels. In macrophages isolated from WAT, endotrophin stimulated higher expression of the collagen-linking enzyme lysyl oxidase and M1 proinflammatory marker genes. In the stromal vascular fraction isolated from WAT, endotrophin induced upregulation of both profibrotic and proinflammatory genes. In conclusion, our study provides a new perspective on the effect of endotrophin in abnormal lipid accumulation and a mechanistic insight into the roles played by adipocytes and a variety of other cell types in AT in shaping the unhealthy microenvironment upon endotrophin treatment.
Assuntos
Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/citologia , Colágeno Tipo VI/genética , Fibrose/genética , Inflamação/genética , Lipólise/genética , Fragmentos de Peptídeos/genética , Células 3T3-L1 , Tecido Adiposo Branco/patologia , Animais , Colágeno/genética , Células HEK293 , Humanos , Hiperplasia , Hipertrofia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Fosforilação/genética , Proteína-Lisina 6-Oxidase/genética , Esterol Esterase/genética , Regulação para CimaRESUMO
Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.
Assuntos
Antígenos CD13/metabolismo , Neoplasias Pulmonares/enzimologia , Animais , Antígenos CD13/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
PURPOSE OF REVIEW: There is emerging evidence that obesity is associated with an increase in the incidence, severity, and mortality from different types of cancer, including postmenopausal breast cancer. Here, we discuss the role of white adipose tissue (WAT) cells and of related soluble factors in the local and metastatic growth of this neoplastic disease. Moreover, we discuss the recent increase in the use of WAT-derived progenitor cells in breast cancer patients to enhance the quality of breast reconstruction and the related risks. RECENT FINDINGS: In several murine models, WAT cells and progenitors were found to have cooperative roles in promoting local breast cancer. Moreover, they were found to contribute to adipocytes and pericytes supporting the cancer vasculature, and stimulated the metastatic progression of breast cancer. There are some clinically retrospective data showing a significant increase in the frequency of intraepithelial neoplasia in patients who received a lipofilling procedure for breast reconstruction compared with controls. SUMMARY: Preclinical models and clinical studies are urgently needed to investigate how to inhibit the tumor-promoting activity of WAT cells and progenitors. The risks associated with the use of WAT cells for breast reconstructions should be better investigated retrospectively and prospectively.
Assuntos
Tecido Adiposo Branco , Neoplasias da Mama/etiologia , Células-Tronco , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Inflamação/metabolismo , Obesidade/complicações , Fatores de RiscoRESUMO
Molecules differentially expressed in blood vessels among organs or between damaged and normal tissues, are attractive therapy targets; however, their identification within the human vasculature is challenging. Here we screened a peptide library in cancer patients to uncover ligand-receptors common or specific to certain vascular beds. Surveying ~2.35 x 10(6) motifs recovered from biopsies yielded a nonrandom distribution, indicating that systemic tissue targeting is feasible. High-throughput analysis by similarity search, protein arrays, and affinity chromatography revealed four native ligand-receptors, three of which were previously unrecognized. Two are shared among multiple tissues (integrin α4/annexin A4 and cathepsin B/apolipoprotein E3) and the other two have a restricted and specific distribution in normal tissue (prohibitin/annexin A2 in white adipose tissue) or cancer (RAGE/leukocyte proteinase-3 in bone metastases). These findings provide vascular molecular markers for biotechnology and medical applications.
Assuntos
Vasos Sanguíneos/metabolismo , Medula Óssea/metabolismo , Neoplasias/metabolismo , Motivos de Aminoácidos , Anexina A4/biossíntese , Apolipoproteína E3/biossíntese , Biópsia , Catepsina B/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa4/biossíntese , Ligantes , Neovascularização Patológica , Obesidade/metabolismo , Biblioteca de PeptídeosRESUMO
Cancer aggressiveness has been linked with obesity, and studies have shown that adipose tissue can enhance cancer progression. In this issue of Cancer Research, Hosni and colleagues discover a paracrine mechanism mediated by adipocyte precursor cells through which urothelial carcinomas become resistant to erdafitinib, a recently approved therapy inhibiting fibroblast growth factor receptors (FGFR). They identified neuregulin 1 (NRG1) secreted by adipocyte precursor cells as an activator of HER3 signaling that enables resistance. The NRG1-mediated FGFR inhibitor resistance was amenable to intervention with pertuzumab, an antibody blocking the NRG1/HER3 axis. To investigate the nature of the resistance-associated NRG1-expressing cells in human patients, the authors analyzed published single-cell RNA sequencing data and observed that such cells appear in a cluster assigned as inflammatory cancer-associated fibroblasts (iCAF). Notably, the gene signature corresponding to these CAFs is highly similar to that shared by adipose stromal cells (ASC) in fat tissue and fibro-adipogenic progenitors (FAP) in skeletal muscle of cancer-free individuals. Because fibroblasts with the ASC/FAP signature are enriched in various carcinomas, it is possible that the paracrine signaling conferred by NRG1 is a pan-cancer mechanism of FGFR inhibitor resistance and tumor aggressiveness. See related article by Hosni et al., p. 725.
Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células de Transição , Humanos , Adipócitos , Tecido Adiposo , Células EstromaisRESUMO
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
RESUMO
It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.
Assuntos
Envelhecimento , Senescência Celular , Células Endoteliais , Camundongos Knockout , Telomerase , Telômero , Animais , Telomerase/metabolismo , Telomerase/genética , Senescência Celular/genética , Envelhecimento/metabolismo , Camundongos , Células Endoteliais/metabolismo , Telômero/metabolismo , Telômero/genética , Mitocôndrias/metabolismoRESUMO
OBJECTIVE: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.
Assuntos
Síndrome de Alstrom , Células-Tronco Mesenquimais , Camundongos Knockout , Animais , Camundongos , Masculino , Feminino , Células-Tronco Mesenquimais/metabolismo , Síndrome de Alstrom/metabolismo , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Resistência à Insulina , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Obesidade/metabolismo , Obesidade/genética , Hiperfagia/metabolismo , Hiperfagia/genética , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Composição CorporalRESUMO
Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction.
Assuntos
Ácidos e Sais Biliares , Orosomucoide , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversosRESUMO
Despite recent evidence of the cancer-promoting role of adipose tissue-derived progenitor and differentiated cells, the use of lipotransfer for tissue/organ reconstruction after surgical removal of cancer is increasing worldwide. Here we discuss in a multidisciplinary fashion the preclinical data connecting obesity, adipose cells and cancer progression, as well as the clinical data concerning safety of lipotransfer procedures in cancer patients. A roadmap towards a more rationale use of lipotransfer in oncology is urgently needed and should include preclinical studies to dissect the roles of different adipose tissue-derived cells, the evaluation of drugs currently candidate to inhibit the interaction between adipose and tumor cells, and carefully designed clinical trials to investigate the safety of lipotransfer procedures in cancer patients.
Assuntos
Adipócitos/patologia , Tecido Adiposo/patologia , Tecido Adiposo/transplante , Neoplasias/etiologia , Procedimentos de Cirurgia Plástica/efeitos adversos , Adipócitos/citologia , Tecido Adiposo/citologia , Humanos , Neoplasias/cirurgia , Procedimentos de Cirurgia Plástica/métodosRESUMO
In vitro toxicity assays based on the evaluation and retention of advanced and specific cellular functions are proposed to investigate mesoporous silicon nanovectors. This approach provides greater insight compared to simple cellular viability and toxicity assays. Electron microscopy images demonstrate internalized nanovectors altering the curvature of the nuclear envelope with minimal effect on viability or biological function.