Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 9: 194, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18442363

RESUMO

BACKGROUND: WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far as regulators in sucrose signaling, pathogen defense, and in response to cold and drought. However, their phylogenetic relationship remained unresolved. RESULTS: In this study, we used available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features, the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. CONCLUSION: HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in monocot and dicot species.


Assuntos
Proteínas de Ligação a DNA/genética , Expressão Gênica , Hordeum/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Evolução Molecular , Magnoliopsida/genética , Dados de Sequência Molecular , Oryza/genética , Filogenia , Doenças das Plantas/genética , Alinhamento de Sequência
2.
Mol Biol Cell ; 15(7): 3393-405, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15133126

RESUMO

Previously, the immunophilin-like protein TWD1 from Arabidopsis has been demonstrated to interact with the ABC transporters AtPGP1 and its closest homologue, AtPGP19. Physiological and biochemical investigation of pgp1/pgp19 and of twd1 plants suggested a regulatory role of TWD1 on AtPGP1/AtPGP19 transport activities. To further understand the dramatic pleiotropic phenotype that is caused by loss-of-function mutation of the TWD1 gene, we were interested in other TWD1 interacting proteins. AtMRP1, a multidrug resistance-associated (MRP/ABCC)-like ABC transporter, has been isolated in a yeast two-hybrid screen. We demonstrate molecular interaction between TWD1 and ABC transporters AtMRP1 and its closest homologue, AtMRP2. Unlike AtPGP1, AtMRP1 binds to the C-terminal tetratricopeptide repeat domain of TWD1, which is well known to mediate protein-protein interactions. Domain mapping proved that TWD1 binds to a motif of AtMRP1 that resembles calmodulin-binding motifs; and calmodulin binding to the C-terminus of MRP1 was verified. By membrane fractionation and GFP-tagging, we localized AtMRP1 to the central vacuolar membrane and the TWD1-AtMRP1 complex was verified in vivo by coimmunoprecipitation. We were able to demonstrate that TWD1 binds to isolated vacuoles and has a significant impact on the uptake of metolachlor-GS and estradiol-beta-glucuronide, well-known substrates of vacuolar transporters AtMRP1 and AtMRP2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Vacúolos/metabolismo , Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/genética , Acetamidas/análise , Acetamidas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas de Ligação a Tacrolimo/genética , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA