RESUMO
The redox reactions of a pyrazine-bridged binuclear [(edta)RuIIIpzRuIII(edta)]2- (edta4- = ethylenediaminetetraacetate; pz = pyrazine) have been investigated spectrochemically and spectroelectrochemically for the first time. The kinetics of the reduction of [(edta)RuIIIpzRuIII(edta)]2- (RuIII-RuIII) with the ascorbic acid anion (HA-) was studied as a function of ascorbic concentration and temperature at a fixed pH 6.0. The overall reaction of RuIII-RuIII was found to consist of two-steps involving the initial formation of the mixed-valence [(edta)RuIIpzRuIII(edta)]3- (RuII-RuIII) intermediate complex (λmax = 462 nm, εmax = 10 000 M-1 cm-1), which undergoes further reduction by ascorbic acid to produce the [(edta)RuIIpzRuII(edta)]4-(RuII-RuII) ultimate product complex (λmax = 540 nm, εmax = 20 700 M-1 cm-1). Our studies further revealed that the RuII-RuIII and RuII-RuII species are formed in the electrochemical reduction of the RuIII-RuIII complex at 0.0 and -0.4 V (vs. SHE), respectively. Formation of RuII-RuIII and RuII-RuII was further corroborated by magnetic moment measurements and DFT calculations. Kinetic data and activation parameters are interpreted in terms of a mechanism involving rate-determining outer-sphere electron transfer between Ru(III) and the ascorbate monoanion (HA-) at pH 6.0. A detailed reaction mechanism in agreement with the spectral, spectro-electrochemical and kinetic data is presented. The results of the spectral and kinetic studies of the reaction of the RuII-RuII complex with molecular oxygen (O2) reveal the ability of the RuII-RuII species to effect the oxygen reduction reaction (ORR) leading to the formation of H2O2, a partial reduction product of dioxygen (O2).
RESUMO
The phosphine ligand (Ph2 PCH2 N(CH3 )(CH2 )2 Ph, PNMPEA) obtained by the reaction of the (hydroxymethyl)diphenylphosphine with naturally occurring alkaloid N-methylphenethylamine, was used to synthesize the half-sandwich iridium(III) (Ir(η5 -Cp*)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, IrPNMPEA) and ruthenium(II) (Ru(η6 -p-cymene)Cl2 Ph2 PCH2 N(CH3 )(CH2 )2 Ph, RuPNMPEA) complexes. They were characterized using a vast array of methods, including 1D and 2D NMR, ESI(+)MS spectrometry, elemental analysis, cyclic voltammetry (CV), electron spectroscopy in the UV-Vis range (absorption, fluorescence) and density functional theory (DFT). The initial antimicrobial activity inâ vitro toward Gram-positive and Gram-negative bacterial strains was examined, indicating that both complexes are selective towards Gram-positive bacteria, e. g., Staphylococcus aureus, where the IrPNMPEA has been more bactericidal compared to RuPNMPEA. Additionally, the interactions of these compounds with various biomolecules, such as DNA (ctDNA, plasmid DNA, 9-ethylguanine (9-EtG), and 9-methyladenine (9-MeA)), nicotinamide adenine dinucleotide (NADH), glutathione (GSH), and ascorbic acid (Asc) were described. The results showed that both Ir(III) and Ru(II) complexes accelerate the oxidation process of NADH, GSH and Asc that appeared to occur by an electron transfer mechanism. Interestingly, only IrPNMPEA leads to the formation of various biomolecule adducts, which can explain its higher activity. Furthermore, RuPNMPEA and IrPNMPEA have been interacting with the DNA through weak noncovalent interactions.
Assuntos
Alcaloides , Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Complexos de Coordenação/química , NAD , Linhagem Celular Tumoral , DNA , Rutênio/química , Antineoplásicos/químicaRESUMO
Novel heteronuclear IrIII-CuII coordination compounds ([Ir(η5-Cp*)Cl2Pcfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (1), [Ir(η5-Cp*)Cl2Pnfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (2), [Ir(η5-Cp*)Cl2Plfx-Cu(phen)](NO3)·1.3(H2O)·1.95(CH3OH) (3), [Ir(η5-Cp*)Cl2Psfx-Cu(phen)] (4)) bearing phosphines derived from fluoroquinolones, namely, sparfloxacin (Hsfx), ciprofloxacin (Hcfx), lomefloxacin (Hlfx), and norfloxacin (Hnfx), have been synthesized and studied as possible anticancer chemotherapeutics. All compounds have been characterized by electrospray ionization mass spectrometry (ESI-MS), a number of spectroscopic methods (i.e., IR, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, variable-temperature magnetic susceptibility measurements, and X-ray diffractometry. The coordination geometry of IrIII in all complexes adopts a characteristic piano-stool geometry with the η5-coordinated and three additional sites occupied by two chloride and phosphine ligands, while CuII ions in complexes 1 and 2 form a distorted square-pyramidal coordination geometry, and in complex 3, the coordination geometry around CuII ions is a distorted octahedron. Interestingly, the crystal structure of [Ir(η5-Cp*)Cl2Plfx-Cu(phen)] features the one-dimensional (1D) metal-organic polymer. Liposomes loaded with redox-active and fluorescent [Ir(η5-Cp*)Cl2Pcfx-Cu(phen)] (1L) have been prepared to increase water solubility and minimize serious systemic side effects. It has been proven, by confocal microscopy and an inductively coupled plasma mass spectrometry (ICP-MS) analysis, that the liposomal form of compound 1 can be effectively accumulated inside human lung adenocarcinoma and human prostate carcinoma cells with selective localization in nuclei. A cytometric analysis showed dominance of apoptosis over the other cell death types. Furthermore, the investigated nanoformulations induced changes in the cell cycle, leading to S phase arrest in a dose-dependent manner. Importantly, in vitro anticancer action on three-dimensional (3D) multicellular tumor spheroids has been demonstrated.
Assuntos
Carcinoma , Complexos de Coordenação , Humanos , Masculino , Cobre/química , Lipossomos , Próstata , Íons , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios XRESUMO
An explanation of carcinogenesis processes may certainly contribute to the prevention and development of novel methods for cancer treatment. In this paper, we considered the probable relationship between the presence of Fusobacterium nucleatum in the colon and its possible influence on the development of colorectal cancer. For this purpose, intracellular and/or extracellular generation of reactive oxygen species (ROS) by mouse colon carcinoma cells (CT26) was stimulated by two fragments of FomA adhesin from F. nucleatum and their complexes with copper(II): Cu(II)-Ac-KGHGNG-NH2 (1Cu) and Cu(II)-Ac-PTVHNE-NH2 (2Cu). Incubation of the cells with copper complexes was followed with ICP-MS technique. The overall generation of ROS was shown by means of fluorescence spectroscopy with two proper probes, whereas identification of ROS was achieved by the spin trapping technique and electron paramagnetic resonance measurements. As a result, an abundant production of the hydroxyl radicals, both inside and outside the cells, was observed upon the stimulation of the CT26 cells with the copper complexes. Clearly both compounds induced strong oxidation stress which triggered a radicals' cascade that finally resulted in the pronounced lipid peroxidation. The latter was evidenced with the measured level of malondialdehyde, a biomarker of the peroxidation process. By applying N-acetylcysteine antioxidant to the studied system, the free radical mechanism of the lipid peroxidation process was confirmed. Hypothetically this mechanism can lead to colon cell damage and further cancerogenesis processes.
Assuntos
Proteínas da Membrana Bacteriana Externa/toxicidade , Cobre/toxicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Linhagem Celular Tumoral , Colo/microbiologia , Neoplasias do Colo , Cobre/química , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacosRESUMO
The acid-base properties and the Cu(II) binding processes of methotrexate (MTX) were characterized by selected spectroscopic techniques and potentiometric measurements. The pH titration data showed that MTX behaves as a triprotic ligand. The deprotonation constants were determined for α-COOH and γ-COOH groups and (N1)H+ from the pteridine ring. Taking all the obtained results into consideration, a coordination pattern was proposed. The DNA-cleaving activity and reactive oxygen species (ROS) generation were investigated for both MTX and the Cu(II)-MTX system. The complex displayed a promising nuclease activity toward plasmid DNA in the presence of hydrogen peroxide. Interestingly, the induction of ROS, such as hydroxyl radicals, superoxide anions or singlet oxygen, was excluded and a different mechanism of DNA degradation was proposed. As MTX is now commonly used in anticancer therapy i.e. against lung cancer, basic cell-based studies were carried out to establish if its Cu(II) complex exhibits higher cytotoxic properties than the ligand alone. Activities of both compounds were also tested against colon carcinoma. Moreover, the determined values of IC50 were confronted with the cytotoxic activity of cisplatin.
RESUMO
In the centrosymmetric dinuclear title complex, [Cu(2)I(2)(C(22)H(16)N(2)O(4))(2)], the Cu(I) atom is coordinated in a distorted tetra-hedral geometry by an N,N'-bidentate dimethyl 2,2'-biquinoline-4,4'-dicarboxyl-ate ligand and two symmetry-related I atoms, which act as bridges to a symmetry-related Cu(I) atom. The distance between the Cu(I) atoms within the dinuclear unit is 2.6723â (11)â Å.
RESUMO
Herein, we present the synthesis of new complexes based on ruthenium(II) (Ru(η6-p-cymene)Cl2PPh2CH2OH (RuPOH) and Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH (RuMPOH)) and iridium(III) (Ir(η5-Cp*)Cl2P(p-OCH3Ph)2CH2OH (IrMPOH) and Ir(η5-Cp*)Cl2PPh2CH2OH (IrPOH)) containing phosphine ligands with/without methoxy motifs on phenyl rings (P(p-OCH3Ph)2CH2OH (MPOH) and PPh2CH2OH (POH)). The complexes were characterized by mass spectrometry, NMR spectroscopy (1D: 1H, 13C{1H}, and 31P{1H} and 2D: HMQC, HMBC, and COSY NMR) and elemental analysis. All the complexes were structurally identified by single-crystal X-ray diffraction analysis. The Ru(II) and Ir(III) complexes have a typical piano-stool geometry with an η6-coordinated arene (RuII complexes) or η5-coordinated (IrIII compounds) and three additional sites of ligation occupied by two chloride ligands and the phosphine ligand. Oxidation of NADH to NAD+ with high efficiency was catalyzed by complexes containing P(p-OCH3Ph)2CH2OH (IrMPOH and RuMPOH). The catalytic property might have important future applications in biological and medical fields like production of reactive oxygen species (ROS). Furthermore, the redox activity of the complexes was confirmed by cyclic voltamperometry. Biochemical assays demonstrated the ability of Ir(III) and Ru(II) complexes to induce significant cytotoxicity in various cancer cell lines. Furthermore, we found that RuPOH and RuMPOH selectively inhibit the proliferation of skin cancer cells (WM266-4; IC50, after 24 h: av. 48.3 µM; after 72 h: av. 10.2 µM) while Ir(III) complexes were found to be moderate against prostate cancer cells (DU145).
Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/química , Linhagem Celular Tumoral , Complexos de Coordenação/química , Irídio/química , Ligantes , Rutênio/química , Rutênio/farmacologiaRESUMO
This work describes the traditional wet and green synthetic approaches, structural features, and extensive bioactivity study for a new coordination polymer [Ag(µ-PTA)(Df)(H2O)]n·3nH2O (1) that bears a silver(I) center, a 1,3,5-triaza-phosphaadamantane (PTA) linker, and a nonsteroidal anti-inflammatory drug, diclofenac (Df-). Compared to cisplatin, compound 1 exhibits both anti-inflammatory properties and very remarkable cytotoxicity toward various cancer cell lines with a high value of selectivity index. Additionally, the 3D model representing human pancreas/duct carcinoma (PANC-1) and human lung adenocarcinoma (A549) was designed and applied as a clear proof of the remarkable therapeutic potential of 1. The obtained experimental data indicate that 1 induces an apoptotic pathway via reactive oxygen species generation, targeting mitochondria due to their membrane depolarization. This study broadens a group of bioactive metal-organic networks and highlights the significant potential of such compounds in developing advanced therapeutic solutions.
Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Diclofenaco/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros/química , Prata/química , Prata/farmacologia , Água/química , Neoplasias PancreáticasRESUMO
Copper(ii) complexes with 2-ethylpyridine (1 and 2), 2-(hydroxyethyl)pyridine (3) and 2-(hydroxymethyl)pyridine (4) have been synthesized and characterized. All inorganic compounds have been studied by X-ray diffraction, thermogravimetry, vibrational and EPR spectroscopy as well as theoretical methods. The geometry of the complexes 1, 3 and 4 adopts nearly perfect geometry close to square planar (1, 4) or square pyramid (3) stereochemistry, respectively. The distortion of five coordinated copper(ii) ions in complex 2 indicates intermediate geometry between square pyramidal and trigonal pyramidal geometry. Further, the magnetic measurements have shown antiferromagnetic behaviour of the prepared complexes in a wide range of temperatures. The antiferromagnetic behaviour of 2 should originate from the superexchange interactions between each copper(ii) ion by the mixed chloride and µ4-O ion pathways. Besides, the weak antiferromagnetic character of 2 can be also attributed to the presence of intrachain exchange between dimeric units through double oxide ion. In complex 3, strong antiferromagnetic coupling between Cu(ii) centres in the Cu2O2Cl2 moiety is found. The cytotoxicity of all compounds was tested in vitro against various cancer cell lines: human lung adenocarcinoma (A549), human breast adenocarcinoma (MCF7), human prostate carcinoma; derived from metastatic site: brain (DU-145) and two normal cell lines: human embryonic kidney (HEK293T) and human keratinocyte (HaCat). Furthermore, Pluronic P-123 micelles loaded with selected complexes (1 and 3) were proposed to overcome low solubility and to minimize systemic side effects. More detailed study revealed that complex 3 loaded inside micelles causes DU-145 cells' death with simultaneous decrease of mitochondrial membrane potential and a high level of reactive oxygen species generation. The stability of the compounds 1-4 in DMSO was confirmed by UV-Vis and FT-IR spectra studies.
RESUMO
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.
RESUMO
[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex-is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.
Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Peptídeos , Fosfinas , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Fosfinas/química , Fosfinas/farmacologiaRESUMO
Gold(III) complex containing 2-pyridineethanol has been synthesized and characterized structurally by single crystal X-ray diffraction, vibrational spectroscopy, 1H NMR spectroscopy, electrochemical study, and DFT calculations. The Au(III) ion is four coordinated with one N-donor ligand (L) and three Cl anions. The Okuniewski's (τ'4=0.018) has been used to estimate the angular distortion from ideal square planar geometry. The vibrational spectroscopy studies, in the solid state and DMSO solution and cyclic voltammetry, have been performed to determine its stability and redox activity, respectively. A complete assignment of the IR and Raman spectra has been made based on the calculated potential energy distribution (PED). The theoretical calculations have been made for two functionals and several basis sets. The compound has been evaluated for its antiproliferative properties in a human lung adenocarcinoma cell line (A549), mouse colon carcinoma (CT26), human breast adenocarcinoma (MCF-7), human prostate carcinoma derived from the metastatic site in the brain (DU-145), and PANC-1 human pancreas/duct carcinoma cell line and non-tumorigenic cell lines: HaCat (human keratinocyte), and HEK293T (human embryonic kidney). Au(III) complex cytotoxicity is significantly against A549 and MCF-7 cells as in the reference drug: cisplatin. Studies of the interactions of Au(III) complex with DNA, HSA (human serum albumin) have been performed. The results from modeling docking simulations indicate that the title complex exerts anticancer effects in vitro based on different mechanisms of action to compare with cisplatin.
Assuntos
Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ouro/química , Piridinas/química , Piridinas/farmacologia , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , DNA/metabolismo , Teoria da Densidade Funcional , Células HEK293 , Humanos , Ligantes , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Simulação de Acoplamento Molecular , Albumina Sérica Humana/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodosRESUMO
l-argininato copper(II) complexes have been intensively investigated in a variety of diseases due to their therapeutic potential. Here we report the results of comprehensive structural studies (ESI-MS, NIR-VIS-UV, EPR) on the complexes arising in aqueous solutions of two ternary copper(II) complexes with molecular formulas from crystal structures, [Cu(l-Arg)2(NCS)](NCS)·H2O (1) and [Cu(l-Arg)(NCS)2] (2) (l-Arg = l-arginine). Reference systems, the ternary Cu(II)/l-Arg/NCS- as well as binary Cu(II)/NCS- and Cu(II)/l-Arg, were studied in parallel in aqueous solutions by pH-potentiometric titration, EPR and VIS spectroscopy to characterize stability, structures and speciation of the formed species over the broad pH range. Comparative analysis of the obtained results showed that at a pH close to 7.0 mononuclear [Cu(l-Arg)2(NCS)]+ is the only species in water solution of 1, while equilibrium between [Cu(l-Arg)(SCN)]+ and binary [Cu(l-Arg)2]2+ was detected in water solution of 2. According to DNA binding studies, the [Cu(l-Arg)2(NCS)]+, [Cu(l-Arg)(SCN)]+ and [Cu(l-Arg)2]2+ species could be considered as strong minor groove binding agents causing, in the presence of H2O2, the involvement of ROS in plasmid damage. The human carcinoma cells (A549 cell line) were generally significantly more sensitive to cytotoxic and antiproliferative effect of compounds 1 and 2 than human normal cells. The studied compounds shown antimicrobial activity against bacteria belonging to Enterobacteriaceae family.
Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , DNA/metabolismo , Isotiocianatos/química , Células A549 , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Complexos de Coordenação/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , SoluçõesRESUMO
Phosphonium salt (p-OCH3-Ph)2P(CH2OH)2Cl (MPOHC), derived phosphine ligands without and with SarGly (Sarcosine-Glycine) peptide carrier P(p-OCH3-Ph)2CH2OH (MPOH) and P(p-OCH3-Ph)2CH2SarGly (MPSG), respectively, and two copper(I) complexes [Cu(I)(dmp)(MPOH)] (1-MPOH; dmp = (2,9-dimethyl-1,10-phenanthroline)) and [Cu(I)(dmp)(MPSG)] (1-MPSG) were synthesized. The resulting compounds were characterized by elemental analysis, 1D and 2D NMR and UV-Vis absorption spectroscopies, mass spectrometry, cyclic voltammetry and by X-ray diffraction analysis. Cytotoxicity of all compounds was evaluated in vitro against colon, lung, breast, pancreatic, prostate tumor cell lines, as well as towards non-tumor cell lines: lung, kidney and keratinocyte. Stable in biological medium in the presence of atmospheric oxygen, Cu(I) complexes exerted a cytotoxic effect higher than that elicited by cisplatin against tested cancer cell lines. The introduction of methoxy group onto the phenyl rings of the phosphine ligand coordinated to the copper(I) ion resulted in a relevant increase of cytotoxicity in the case of breast, pancreatic and prostate tumor cell lines in vitro. Attachment of a peptide carrier significantly increased the selectivity towards cancer cells. Fluorescence spectroscopic data (calf thymus DNA: CT-DNA) titration), together with analysis of DNA fragmentation (gel electrophoresis) and molecular docking provided evidence for the multimodal interaction of copper compounds with DNA and showed their unusual low genotoxicity. Additionally, copper complexes were able to generate reactive oxygen species as a result of redox processes, proved by fluorescence spectroscopy and cyclic voltamperometry.
Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Cobre/química , Mutagênicos/síntese química , Compostos Organometálicos/síntese química , Fosfinas/química , Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/toxicidade , DNA/química , Radicais Livres/química , Células HEK293 , Humanos , Células MCF-7 , Mutagênicos/toxicidade , Compostos Organometálicos/toxicidade , Estresse Oxidativo , Peptídeos/química , Peptídeos/metabolismoRESUMO
The main disadvantage of conventional anticancer chemotherapy is the inability to deliver the correct amount of drug directly to cancer. Those molecular delivering systems are very important to destroy cancer cells selectively. Herein we report synthesis of phosphine-peptide conjugate (Ph2PCH2-Sar-Gly-OH, PSG) derived from SarGly (sarcosine-glycine), which can be easily exchanged to other peptide carriers, its oxide (OPh2PCH2-Sar-Gly-OH, OPSG) and the first copper(I) complex ([CuI(dmp)(P(Ph)2CH2-Sar-Gly-OH)], 1-PSG, where dmp stands for 2,9-dimethyl-1,10-phenanthroline). The compounds were characterized by elemental analysis, NMR (1D, 2D), UV-Vis spectroscopy and DFT (Density Functional Theory) methods. PSG and 1-PSG proved to be stable in biological medium in the presence of atmospheric oxygen for several days. The cytotoxicity of the compounds and cisplatin was tested against cancer cell lines: mouse colon carcinoma (CT26; 1-PSGIC50â¯=â¯3.12⯱â¯0.1), human lung adenocarcinoma (A549; 1-PSGIC50â¯=â¯2.01⯱â¯0.2) and human breast adenocarcinoma (MCF7; 1-PSGIC50â¯=â¯0.98⯱â¯0.2) as well as against primary line of human pulmonary fibroblasts (MRC-5; 1-PSGIC50â¯=â¯78.56⯱â¯1.1). Therapeutic index for 1-PSG (MCF7) equals 80. Intracellular accumulation of 1-PSG complex increased with time and was much higher (96%) inside MCF7 cancer cells than in normal MRC5 cells (20%). Attachment of SarGly to cytotoxic copper(I) complex via phosphine motif improved selectivity of copper(I) complex 1-PSG into the cancer cells. Precise mechanistic study revealed that the 1-PSG complex causes apoptotic cells MCF7 death with simultaneous decrease of mitochondrial membrane potential and increase of caspase-9 and -3 activities. Additionally, 1-PSG generated high level of reactive oxygen species that was the reason for oxidative damages to the sugar-phosphate backbone of plasmid DNA.
Assuntos
Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação , Cobre , Peptídeos , Fosfinas , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Feminino , Humanos , Células MCF-7 , Peptídeos/química , Peptídeos/farmacologia , Fosfinas/química , Fosfinas/farmacologiaRESUMO
In this paper, we present a comparative study on the cytotoxic mode of action of copper(I) and copper(II) complexes with phosphine derivatives of fluoroquinolone antibiotics (ciprofloxacin HCp and norfloxacin HNr). The in vitro cytotoxic activity of four new compounds was tested against two selected cancer cell lines. All complexes exhibited much better cytotoxicity against both cell lines than unmodified fluoroquinolone antibiotics, their phosphines (PCp, PNr), chalcogenide derivatives (oxides: OPCp, OPNr; sulfides: SPCp, SPNr and selenides: SePCp, SePNr) and previously described by us complexes with phosphines derived from different fluoroquinolones: lomefloxacin (HLm) and sparfloxacin (HSf) as well as cisplatin. Apoptosis, observed at a great predominance, was induced by all studied complexes. Importantly, it was concluded that coordination compounds with Cu(I) ion ([CuI-PNr] and [CuI-PCp]) were much more active than those with Cu(II) ion ([OPNr-CuII], [OPCp-CuII]), even though the highest efficacy to produce reactive oxygen species, participating in overall cytotoxicity, was proved for copper(II) complexes among all studied compounds. Herein, we discuss not only results obtained for copper(I)/(II) complexes with phosphines derived from HNr and HCp but we also compare them to previously described data for complexes with HLm and HSf derivatives. This is the first insight into a structure-activity relationship of copper complexes with phosphine derivatives of fluoroquinolone antibiotics.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Ciprofloxacina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Cobre/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Norfloxacino/análogos & derivados , Fosfinas/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/química , Quelantes/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Técnicas Eletroquímicas , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Estrutura Molecular , Norfloxacino/química , Norfloxacino/farmacologia , Fosfinas/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-AtividadeRESUMO
Novel half-sandwich ruthenium(II) complexes with aminomethyl(diphenyl)phosphine derived from fluoroloquinolones (RuPCp, RuPSf, RuPLm, RuPNr) were being investigated as alternatives to well-established metal-based chemotherapeutics. All compounds were characterized by elemental analysis, selected spectroscopic methods (i.e., absorption and fluorescence spectroscopies, ESI-MS, NMR, circular dichroizm), X-ray diffractometry, ICP-MS, and electrochemical techniques. To overcome low solubility, serious side effects connected with systemic cytotoxicity of ruthenium complexes, and acquiring the resistance of cancer cells, polymeric nanoformulations based on Pluronic P-123 micelles loaded with selected Ru(II) complexes were prepared and characterized. Resulting micelles (RuPCp_M, RuPNr_M) enabled efficient drug accumulation inside human lung adenocarcinoma (A549 tumor cell line), proved by confocal microscopy and ICP-MS analysis, allowing cytotoxic action. Studied complexes exhibited promising cytotoxicity in vitro with IC50 values significantly lower than the reference drug - cisplatin. The fluorescence spectroscopic data (CT-DNA titration, in vitro cell staining) together with analysis of DNA fragmentation (pBR322 plasmid, comet assay) provided clear evidence for the interaction with DNA inducing apoptotic cell death.
Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Fosfinas/farmacologia , Rutênio/farmacologia , Células A549 , Adenocarcinoma de Pulmão , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/química , Fragmentação do DNA/efeitos dos fármacos , Fluoroquinolonas/química , Humanos , Concentração Inibidora 50 , Micelas , Nanopartículas/química , Fosfinas/química , Fosfinas/uso terapêutico , Poloxaleno/química , Rutênio/química , Rutênio/uso terapêuticoRESUMO
Goserelin acetate (Gos) as a synthetic analog of the mammalian gonadotropin-releasing hormone (GnRH) is widely used in the treatment of sex hormone-related conditions. In this paper we present the chemical and biological aspects of its interaction with Cu(II) ions. The mode of Cu(II) binding and the thermodynamic stability of the obtained complexes were characterized by potentiometry, UV-Vis and CD spectroscopic methods. The DFT calculations were applied in order to investigate and confirm the molecular structure of the studied systems. The experimental and theoretical results clearly indicated the involvement of three nitrogens from the peptide and two oxygens from the acetate moieties in the Cu(II) coordination under physiological conditions. The investigated metallopeptide caused single- and/or double cleavage of the sugar-phosphate backbone of the plasmid DNA in the reaction accompanied by endogenous substances such as hydrogen peroxide or ascorbic acid. The degradation of the DNA molecule occurred via the free radical mechanism. Calculations based on measured spectra allowed determining the kinetic parameters of OH formation. The cytotoxic effects of Gos and its metallo-derivative were tested in vitro towards two cancer cell lines (A549 - human lung adenocarcinoma, CT26 - mouse colon carcinoma).
Assuntos
Complexos de Coordenação , Citotoxinas , DNA de Neoplasias/química , Gosserrelina , Células A549 , Animais , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , DNA de Neoplasias/metabolismo , Gosserrelina/química , Gosserrelina/farmacologia , Humanos , Camundongos , OxirreduçãoRESUMO
Reaction of {[Ru(η6-p-cymene)Cl]2(µ-Cl)2} (1) with aminomethylphosphane derived from morpholine (P{CH2N(CH2CH2)2O}3 (A), PPh2{CH2N(CH2CH2)2O} (B)) or piperazine (P{CH2N(CH2CH2)2NCH2CH3}3 (C), PPh2{CH2N(CH2CH2)2NCH2CH3} (D)) results in four new piano stool ruthenium(II) coordination compounds: [Ru(η6-p-cymene)Cl2(A)] (2A), [Ru(η6-p-cymene)Cl2(B)] (2B), [Ru(η6-p-cymene)Cl2(C)] (2C) and [Ru(η6-p-cymene)Cl2(D)] (2D). Every complex was fully characterized using spectroscopic methods (1H, 13C{1H}, 31P{1H} NMR and ESI-MS), elemental analysis, X-ray single crystal diffraction and DFT calculations. Preliminary studies of in vitro cytotoxicity on the A549 (human lung adenocarcinoma) and MCF7 (human breast adenocarcinoma) cell lines revealed 2A-2D activity in the same order of magnitude as in the case of cisplatin. Additionally, the study confirmed the ability of 2A-2D to interact with DNA helix and transferrin.