RESUMO
UNLABELLED: The authors analyze the sensitivities of source regions in East Asia to PM2.5 (particulate matter with an aerodynamic diameter of < or = 2.5 microm) concentration at Fukue Island located in the western part of Japan by using a regional chemical transport model with emission sensitivity simulations for the year 2010. The temporal variations in PM2.5 concentration are generally reproduced, but the absolute concentration is underestimated by the model. Chemical composition of PM2.5 in the model is compared with filter sampling data in spring; simulated sulfate, ammonium, and elemental carbon are consistent with observations, but mass concentration of particulate organic matters is underestimated. The relative contribution from each source region shows the seasonal variation, especially in summer. The contribution from central north China (105 degrees E-124 degrees E, 34 degrees N-42 degrees N) accounts for 50-60% of PM2.5 at Fukue Island except in summer; it significantly decreases in summer (18%). Central south China (105 degrees E-123 degrees E, 26 degrees N-34 degrees N) has the relative contribution of 15-30%. The contribution from the Korean Peninsula is estimated at about 10% except in summer. The domestic contribution accounts for about 7% in spring and autumn and increases to 19% in summer. We also estimate the relative contribution to daily average concentration in high PM2.5 days (> 35 microg m(-3)). Central north China has a significant contribution of 60-70% except in summer. The relative contribution from central south China is estimated at 46% in summer and about 30% in the other seasons. The contributions from central north and south China on high PM2.5 days are generally larger than those of their seasonal mean contributions. The domestic contribution is smaller than the seasonal mean value in every season; it is less than 10% even in summer. These model results suggest that foreign anthropogenic sources have a substantial impact on attainment of the atmospheric environmental standard of Japan at Fukue Island. IMPLICATIONS: The contribution from several source regions in East Asia to PM2.5 concentration at Fukue Island, a remote island located in the western part of Japan and close to the Asian continent, is estimated using a three-dimensional chemical transport model. The model results suggest that PM2.5 that is attributed to foreign anthropogenic sources have a larger contribution than that of domestic pollution and have a substantial impact on attainment of the atmospheric environmental standard of Japan at Fukue Island.
Assuntos
Poluentes Atmosféricos/análise , Compostos de Amônio/análise , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Sulfatos/análise , Atmosfera/química , China , Ásia Oriental , Japão , Modelos Teóricos , Tamanho da Partícula , Estações do Ano , Análise Espaço-TemporalRESUMO
We conducted ship-based measurements of marine aerosol particles (number concentration, size distribution, black carbon (BC), autofluorescence property, and PM2.5 composition) and trace gases (ozone (O3) and carbon monoxide (CO)) during a cruise of the R/V Mirai (23 August to 4 October 2016) over the Arctic Ocean, Northwest Pacific Ocean, and Bering Sea. Over the Arctic Ocean at latitudes >70°N, the averaged BC mass concentration was 0.7 ± 1.8 ng/m3, confirming the validity of our previously-reported observations (~1 ng/m3) over the same region during September 2014 and September 2015. The observed levels over the Arctic Ocean need to be used as a benchmark when testing the atmospheric transport models over the ocean, while they are substantially lower than those reported at Barrow (Utqiagvik), a nearby ground-based station. We identified events with elevated BC mass concentrations and CO mixing ratios over the Arctic Ocean and Bering Sea as influenced by biomass burnings, with evidences from elevated levoglucosan levels, mixing states of BC particles, and particle size distributions. With WRF-Chem model simulations, we confirmed Siberian Forest fire plumes traveled over thousands of kilometers and produced substantially high BC and CO levels over the Bering Sea. The ΔBC/ΔCO ratios during these periods were estimated as ~1 ng/m3/ppbv, which are lower than those values reported, indicating that the results might have been affected by the wet removal process during transportation and/or by emission in smoldering conditions.
Assuntos
Monóxido de Carbono , Ozônio , Aerossóis/análise , Biomassa , Oceano Pacífico , FuligemRESUMO
The presence of iodine chemistry, hypothesized due to the overprediction of HO(2) levels by a photochemical box model at Rishiri Island in June 2000, was quantitatively tested against the observed NO/NO(2) ratios and the net production rates of ozone. The observed NO/NO(2) ratios were reproduced reasonably well by considering the conversion of NO to NO(2) by IO, whose amount was calculated so as to reproduce the observed HO(2) levels. However, the net production rates of ozone were calculated to be negative when such high mixing ratios of IO were considered, which was inconsistent with the observed buildup of ozone during daytime. These results suggest that iodine chemistry may not be the sole mechanism for the reduced mixing ratios of HO(2), or that "hot spots" for iodine chemistry were present. Diurnal variations in the mixing ratios of HCHO, CH(3)CHO, peroxy acetyl nitrate (PAN) and HNO(3) observed during the study are presented along with the simulated ones. The box model simulations suggest that the effect of iodine chemistry on these concentrations is small and that important sources of CH(3)CHO and sinks of PAN are probably missing from our current understanding of the tropospheric chemistry mechanism.