Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
FASEB J ; 37(12): e23313, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962238

RESUMO

Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.


Assuntos
Implantação do Embrião , Útero , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Útero/metabolismo
2.
Biol Reprod ; 107(4): 881-901, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35878972

RESUMO

Endometriosis that afflicts one in 10 women of reproductive age is characterized by growth of endometrial tissue in the extra-uterine sites and encompasses metabolic-, immunologic-, and endocrine-disruption. Importantly, several comorbidities are associated with endometriosis, especially autoimmune disorders such as inflammatory bowel disease. Primarily thought of as a condition arising from retrograde menstruation, emerging evidence uncovered a functional link between the gut microbiota and endometriosis. Specifically, recent findings revealed altered gut microbiota profiles in endometriosis and in turn this altered microbiota appears to be causal in the disease progression, implying a bidirectional crosstalk. In this review, we discuss the complex etiology and pathogenesis of endometriosis, emphasizing on this recently recognized role of gut microbiome. We review the gut microbiome structure and functions and its complex network of interactions with the host for maintenance of homeostasis that is crucial for disease prevention. We highlight the underlying mechanisms on how some bacteria promote disease progression and others protect against endometriosis. Furthermore, we highlight the areas that require future emphases in the gut microbiome-endometriosis nexus and the potential microbiome-based therapies for amelioration of endometriosis.


Assuntos
Endometriose , Microbioma Gastrointestinal , Microbiota , Progressão da Doença , Endometriose/patologia , Feminino , Homeostase , Humanos
3.
Biol Reprod ; 104(2): 336-343, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33205194

RESUMO

The coronavirus disease 2019 (COVID-19) first appeared in December 2019 and rapidly spread throughout the world. The SARS-CoV-2 virus enters the host cells by binding to the angiotensin-converting enzyme 2 (ACE2). Although much of the focus is on respiratory symptoms, recent reports suggest that SARS-CoV-2 can cause pregnancy complications such as pre-term birth and miscarriages; and women with COVID-19 have had maternal vascular malperfusion and decidual arteriopathy in their placentas. Here, we report that the ACE2 protein is expressed in both endometrial epithelial and stromal cells in the proliferative phase of the menstrual cycle, and the expression increases in stromal cells in the secretory phase. It was observed that the ACE2 mRNA and protein abundance increased during primary human endometrial stromal cell (HESC) decidualization. Furthermore, HESCs transfected with ACE2-targeting siRNA impaired the full decidualization response, as evidenced by a lack of morphology change and lower expression of the decidualization markers PRL and IGFBP1. Additionally, in mice during pregnancy, the ACE2 protein was expressed in the uterine epithelial cells, and stromal cells increased through day 6 of pregnancy. Finally, progesterone induced Ace2 mRNA expression in mouse uteri more than vehicle or estrogen. These data establish a role for ACE2 in endometrial physiology, suggesting that SARS-CoV-2 may be able to enter endometrial stromal cells and elicit pathological manifestations in women with COVID-19, including an increased risk of early pregnancy loss.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Endométrio/fisiologia , SARS-CoV-2/fisiologia , Células Estromais/fisiologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/complicações , Células Cultivadas , Endométrio/citologia , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Gravidez , Prolactina/genética , Prolactina/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
4.
Biol Reprod ; 102(4): 843-851, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901086

RESUMO

Successful establishment of pregnancy depends on steroid hormone-driven cellular changes in the uterus during the peri-implantation period. To become receptive to embryo implantation, uterine endometrial stromal cells (ESCs) must transdifferentiate into decidual cells that secrete factors necessary for embryo survival and trophoblast invasion. Autophagy is a key homeostatic process vital for cellular homeostasis. Although the uterus undergoes major cellular changes during early pregnancy, the precise role of autophagy in uterine function is unknown. Here, we report that conditional knockout of the autophagy protein FIP200 in the reproductive tract of female mice results in reduced fecundity due to an implantation defect. In the absence of FIP200, aberrant progesterone signaling results in sustained uterine epithelial proliferation and failure of stromal cells to decidualize. Additionally, loss of FIP200 impairs decidualization of human ESCs. We conclude that the autophagy protein FIP200 plays a crucial role in uterine receptivity, decidualization, and fertility. These data establish autophagy as a major cellular pathway required for uterine receptivity and decidualization in both mice and human ESCs.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Progesterona/metabolismo , Útero/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Decídua/metabolismo , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia , Células Estromais/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(24): E4772-E4781, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559342

RESUMO

Embryo implantation remains a significant challenge for assisted reproductive technology, with implantation failure occurring in ∼50% of in vitro fertilization attempts. Understanding the molecular mechanisms underlying uterine receptivity will enable the development of new interventions and biomarkers. TGFß family signaling in the uterus is critical for establishing and maintaining pregnancy. Follistatin (FST) regulates TGFß family signaling by selectively binding TGFß family ligands and sequestering them. In humans, FST is up-regulated in the decidua during early pregnancy, and women with recurrent miscarriage have lower endometrial expression of FST during the luteal phase. Because global knockout of Fst is perinatal lethal in mice, we generated a conditional knockout (cKO) of Fst in the uterus using progesterone receptor-cre to study the roles of uterine Fst during pregnancy. Uterine Fst-cKO mice demonstrate severe fertility defects and deliver only 2% of the number of pups delivered by control females. In Fst-cKO mice, the uterine luminal epithelium does not respond properly to estrogen and progesterone signals and remains unreceptive to embryo attachment by continuing to proliferate and failing to differentiate. The uterine stroma of Fst-cKO mice also responds poorly to artificial decidualization, with lower levels of proliferation and differentiation. In the absence of uterine FST, activin B expression and signaling are up-regulated, and bone morphogenetic protein (BMP) signals are impaired. Our findings support a model in which repression of activin signaling by FST enables uterine receptivity by preserving critical BMP signaling.


Assuntos
Decídua/fisiologia , Folistatina/fisiologia , Útero/fisiologia , Animais , Modelos Animais de Doenças , Implantação do Embrião/fisiologia , Feminino , Fertilização in vitro , Folistatina/deficiência , Folistatina/genética , Humanos , Infertilidade Feminina/fisiopatologia , Subunidades beta de Inibinas/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Transdução de Sinais
6.
Hum Reprod ; 34(6): 1106-1116, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31037294

RESUMO

STUDY QUESTION: Does altering gut microbiota with antibiotic treatment have any impact on endometriosis progression? SUMMARY ANSWER: Antibiotic therapy reduces endometriosis progression in mice, possibly by reducing specific gut bacteria. WHAT IS KNOWN ALREADY: Endometriosis, a chronic condition causing abdominal pain and infertility, afflicts up to 10% of women between the ages of 25 and 40, ~5 million women in the USA. Current treatment strategies, including hormone therapy and surgery, have significant side effects and do not prevent recurrences. We have little understanding of why some women develop endometriosis and others do not. STUDY DESIGN, SIZE, DURATION: Mice were treated with broad-spectrum antibiotics or metronidazole, subjected to surgically-induced endometriosis and assayed after 21 days. PARTICIPANTS/MATERIALS, SETTING, METHODS: The volumes and weights of endometriotic lesions and histological signatures were analysed. Proliferation and inflammation in lesions were assessed by counting cells that were positive for the proliferation marker Ki-67 and the macrophage marker Iba1, respectively. Differences in faecal bacterial composition were assessed in mice with and without endometriosis, and faecal microbiota transfer studies were performed. MAIN RESULTS AND THE ROLE OF CHANCE: In mice treated with broad-spectrum antibiotics (vancomycin, neomycin, metronidazole and ampicillin), endometriotic lesions were significantly smaller (~ 5-fold; P < 0.01) with fewer proliferating cells (P < 0.001) than those in mice treated with vehicle. Additionally, inflammatory responses, as measured by the macrophage marker Iba1 in lesions and IL-1ß, TNF-α, IL-6 and TGF-ß1 in peritoneal fluid, were significantly reduced in mice treated with broad-spectrum antibiotics (P < 0.05). In mice treated with metronidazole only, but not in those treated with neomycin, ectopic lesions were significantly (P < 0.001) smaller in volume than those from vehicle-treated mice. Finally, oral gavage of faeces from mice with endometriosis restored the endometriotic lesion growth and inflammation (P < 0.05 and P < 0.01, respectively) in metronidazole-treated mice. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: These findings are from a mouse model of surgically-induced endometriosis. Further studies are needed to determine the mechanism by which gut bacteria promote inflammation, identify bacterial genera or species that promote disease progression and assess the translatability of these findings to humans. WIDER IMPLICATIONS OF THE FINDINGS: Our findings suggest that gut bacteria promote endometriosis progression in mice. This finding if translated to humans, could aid in the development of improved diagnostic tools and personalised treatment strategies. STUDY FUNDING AND COMPETING INTEREST(S): This work was funded, in part, by: a National Institutes of Health (NIH)/ National Institute of Child Health and Human Development (NICHD) grant (R00HD080742) to RK; Washington University School of Medicine start-up funds to RK; an Endometriosis Foundation of America Research Award to R.K.; and an NIH/NICHD grant (R01HD091218) to IUM. The authors report no conflict of interest.


Assuntos
Antibacterianos/administração & dosagem , Endometriose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Metronidazol/administração & dosagem , Doenças Peritoneais/tratamento farmacológico , Animais , Modelos Animais de Doenças , Progressão da Doença , Endometriose/microbiologia , Endometriose/patologia , Endométrio/patologia , Transplante de Microbiota Fecal/efeitos adversos , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos , Doenças Peritoneais/microbiologia , Doenças Peritoneais/patologia
7.
PLoS Genet ; 12(4): e1005937, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035670

RESUMO

Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights into the molecular mechanisms by which progesterone drives hESC decidualization, our findings provide a new conceptual framework that could lead to new avenues for diagnosis and/or treatment of adverse reproductive outcomes associated with a dysfunctional uterus.


Assuntos
Decídua/fisiologia , Endométrio/citologia , Fatores de Transcrição Kruppel-Like/fisiologia , Células Estromais/citologia , Decídua/citologia , Decídua/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Endométrio/metabolismo , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Progestinas/farmacologia , Proteína com Dedos de Zinco da Leucemia Promielocítica , Receptores de Progesterona/fisiologia , Células Estromais/metabolismo , Transcrição Gênica/fisiologia
8.
Biol Reprod ; 98(6): 856-869, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546395

RESUMO

Speckle-type poz protein (SPOP) is an E3-ubiquitin ligase adaptor for turnover of a diverse number of proteins involved in key cellular processes such as chromatin remodeling, transcriptional regulation, and cell signaling. Genomic analysis revealed that SPOP somatic mutations are found in a subset of endometrial cancers, suggesting that these mutations act as oncogenic drivers of this gynecologic malignancy. These studies also raise the question as to the role of wild-type SPOP in normal uterine function. To address this question, we generated a mouse model (Spopd/d) in which SPOP is ablated in uterine cells that express the PGR. Fertility studies demonstrated that SPOP is required for embryo implantation and for endometrial decidualization. Molecular analysis revealed that expression levels of the PGR at the protein and transcript level are significantly reduced in the Spopd/d uterus. While this result was unexpected, this finding explains in part the dysfunctional phenotype of the Spopd/d uterus. Moderate increased levels of the ESR1, GATA2, and SRC2 were detected in the Spopd/d uterus, suggesting that SPOP is required to maintain the proteome for normal uterine function. With age, the Spopd/d endometrium exhibits large glandular cysts with foci of epithelial proliferation, further supporting a role for SPOP in maintaining a healthy uterus. Collectively, studies on the Spopd/d mouse support an important role for SPOP in normal uterine function and suggest that this mouse model may prove useful to study the role of SPOP-loss-of-function mutations in the etiopathogenesis of endometrial cancer.


Assuntos
Implantação do Embrião/fisiologia , Infertilidade/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Útero/metabolismo , Animais , Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator de Transcrição GATA2/metabolismo , Infertilidade/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Gravidez , Proteínas Repressoras/genética , Complexos Ubiquitina-Proteína Ligase
9.
Biol Reprod ; 98(1): 15-27, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186366

RESUMO

Infertility and early embryo miscarriage is linked to inadequate endometrial decidualization. Although transcriptional reprogramming is known to drive decidualization in response to progesterone, the key signaling effectors that directly mediate this hormone response are not fully known. This knowledge gap is clinically significant because identifying the early signals that directly mediate progesterone-driven decidualization will address some of the current limitations in diagnosing and therapeutically treating patients at most risk for early pregnancy loss. We recently revealed that the promyelocytic leukemia zinc finger (PLZF) is a direct target of the progesterone receptor and is essential for decidualization of human endometrial stromal cells (hESCs). The purpose of this current work was to identify the genome-wide transcriptional program that is controlled by PLZF during hESC decidualization using an established in vitro hESC culture model, siRNA-mediated knockdown methods, and RNA-sequencing technology followed by bioinformatic analysis and validation. We discovered that PLZF is critical in the regulation of genes that are involved in cellular processes that are essential for the archetypal morphological and functional changes that occur when hESCs transform into epithelioid decidual cells such as proliferation and cell motility. We predict that the transcriptome datasets identified in this study will not only contribute to a broader understanding of PLZF-dependent endometrial decidualization at the molecular level but may advance the development of more effective molecular diagnostics and therapeutics for the clinical management of female infertility and subfertility that is based on a dysfunctional endometrium.


Assuntos
Decídua/fisiologia , Endométrio/citologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Biologia Computacional , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Interferência de RNA , Células Estromais/citologia , Células Estromais/metabolismo , Transcriptoma
10.
Reproduction ; 156(5): 387-395, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30325183

RESUMO

Establishment of a successful pregnancy requires not only implantation of a healthy embryo into a receptive uterus but also progesterone receptor (PGR)-dependent transformation of endometrial stromal cells (ESCs) into specialized decidual cells. Decidual cells support the developing embryo and are critical for placentation. We have previously shown that a known transcriptional coregulator of the PGR, steroid receptor coactivator-2 (SRC-2), is a critical driver of endometrial decidualization in both human and mouse endometrium. However, the full spectrum of genes transcriptionally controlled by SRC-2 in decidualizing ESCs has not been identified. Therefore, using an RNA- and chromatin immunoprecipitation-sequencing approach, we have identified the transcriptome of decidualizing human ESCs (hESCs) that requires SRC-2. We revealed that the majority of hESC genes regulated by SRC-2 are associated with decidualization. Over 50% of SRC-2-regulated genes are also controlled by the PGR. While ontology analysis showed that SRC-2-dependent genes are functionally linked to signaling processes known to underpin hESC decidualization, cell membrane processes were significantly enriched in this analysis. Follow-up studies showed that retinoid signaling is dependent on SRC-2 during hESC decidualization. Specifically, SRC-2 is required for full induction of the retinol transporter, stimulated by retinoic acid 6 (STRA6), which is essential for hESC decidualization. Together our findings show that a critical subset of genes transcriptionally reprogramed by PGR during hESC decidualization requires SRC-2. Among the multiple genes, pathways and networks that are dependent on SRC-2 during hESC decidualization, first-line analysis supports a critical role for this coregulator in maintaining retinoid signaling during progesterone-driven decidualization.


Assuntos
Endométrio/fisiologia , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Coativador 2 de Receptor Nuclear/fisiologia , Transcriptoma , Células Cultivadas , Feminino , Humanos , Receptores de Progesterona/metabolismo , Análise de Sequência de RNA
11.
Int J Mol Sci ; 19(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154312

RESUMO

Sex hormones play important roles in the onset and progression of several cancers, such as breast, ovarian, and prostate cancer. Although drugs targeting sex hormone function are useful in treating cancer, tumors often develop resistance. Thus, we need to define the downstream effectors of sex hormones in order to develop new treatment strategies for these cancers. Recent studies unearthed one potential mediator of steroid hormone action in tumors: growth regulation by estrogen in breast cancer 1 (GREB1). GREB1 is an early estrogen-responsive gene, and its expression is correlated with estrogen levels in breast cancer patients. Additionally, GREB1 responds to androgen in prostate cancer cells, and can stimulate the proliferation of breast, ovarian, and prostate cancer cells. Recent studies have shown that GREB1 also responds to progesterone in human endometrial cells, suggesting that GREB1 is a pan steroid-responsive gene. This mini-review examines evidence that GREB1 participates in several hormone-dependent cancers and could be targeted to treat these cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Hormônios/metabolismo , Proteínas de Neoplasias/genética , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Esteroides/metabolismo , Relação Estrutura-Atividade , Pesquisa Translacional Biomédica
12.
Mol Hum Reprod ; 23(9): 646-653, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911214

RESUMO

STUDY QUESTION: Is Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) required for progesterone-driven endometrial stromal cell decidualization? SUMMARY ANSWER: GREB1 is a novel progesterone-responsive gene required for progesterone-driven human endometrial stromal cell (HESC) decidualization. WHAT IS KNOWN ALREADY: Successful establishment of pregnancy requires HESCs to transform from fibroblastic to epithelioid cells in a process called decidualization. This process depends on the hormone progesterone, but the molecular mechanisms by which it occurs have not been determined. STUDY DESIGN, SIZE, DURATION: Primary and transformed HESCs in which GREB1 expression was knocked down were decidualized in culture for up to 6 days. Wild-type and progesterone receptor (PR) knockout mice were treated with progesterone, and their uteri were assessed for levels of GREB1 expression. PARTICIPANTS/MATERIALS, SETTING, METHODS: Analysis of previous data included data mining of expression profile data sets and in silico transcription factor-binding analysis. Endometrial biopsies obtained from healthy women of reproductive age during the proliferative phase (Days 8-12) of their menstrual cycle were used for isolating HESCs. Experiments were carried out with early passage (no more than four passages) HESCs isolated from at least three subjects. Transcript levels of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1) were detected by quantitative RT-PCR as readouts for HESC decidualization. Cells were also imaged by phase-contrast microscopy. To assess the requirement for GREB1, PR and SRC-2, cells were transfected with specifically targeted small interfering RNAs. Results are shown as mean and SE from three replicates of one representative patient-derived primary endometrial cell line. Experiments were also conducted with transformed HESCs. MAIN RESULTS AND THE ROLE OF CHANCE: Progesterone treatment of mice and transformed HESCs led to an ~5-fold (5.6 ± 0.81, P < 0.05, and 5.2 ± 0.26, P < 0.01, respectively) increase in GREB1 transcript levels. This increase was significantly reduced in the uteri of PR knock-out mice (P < 0.01), in HESCs treated with the PR antagonist RU486 (P < 0.01), or in HESCs in which PR expression was knocked down (P < 0.05). When GREB1 expression was knocked down, progesterone-driven decidualization markers in both immortalized and primary HESCs was significantly reduced (P < 0.05 and P < 0.01). Finally, GREB1 knock down signficantly reduced expression of the PR target genes WNT4 and FOXOA1 (P < 0.05 and P < 0.01, respectively). LARGE SCALE DATA: This study used the Nuclear Receptor Signaling Atlas. LIMITATIONS, REASONS FOR CAUTION: Although in vitro cell culture studies indicate that GREB1 is required for endoemtrial decidualization, the in vivo role of GREB1 in endometrial function and dysfunction should be assessed by using knock-out mouse models. WIDER IMPLICATIONS OF THE FINDINGS: Identification and functional analysis of GREB1 as a key molecular mediator of decidualization may lead to improved diagnosis and clinical management of women with peri-implantation loss due to inadequate endometrial decidualization. STUDY FUNDING AND COMPETING INTEREST(S): This research was funded in part by: a National Institutes of Health (NIH)/ National Institute of Child Health and Human Development (NICHD) grant (R00 HD080742) and Washington University School of Medicine start-up funds to R.K., an NIH/NICHD grant (RO1 HD-07857) to B.W.O.M., and a NIH/NICHD grant (R01 HD-042311) to J.P.L. The authors declare no conflicts of interests.


Assuntos
Decídua/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Neoplasias/genética , Progesterona/farmacologia , Receptores de Progesterona/genética , Células Estromais/efeitos dos fármacos , Animais , Diferenciação Celular , Decídua/citologia , Decídua/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Camundongos Knockout , Mifepristona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Coativador 2 de Receptor Nuclear/antagonistas & inibidores , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Gravidez , Cultura Primária de Células , Prolactina/genética , Prolactina/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/deficiência , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
13.
PLoS Genet ; 9(10): e1003900, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204309

RESUMO

Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy.


Assuntos
Aborto Espontâneo/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Coativador 2 de Receptor Nuclear/genética , Fosfofrutoquinase-2/biossíntese , Aborto Espontâneo/etiologia , Aborto Espontâneo/patologia , Animais , Células Cultivadas , Decídua/citologia , Decídua/metabolismo , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Coativador 2 de Receptor Nuclear/metabolismo , Fosfofrutoquinase-2/genética , Gravidez , Transdução de Sinais/genética , Células Estromais/metabolismo , Células Estromais/patologia
14.
Biol Reprod ; 91(5): 122, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25297546

RESUMO

The p160/steroid receptor coactivator (SRC) family comprises three pleiotropic coregulators (SRC-1, SRC-2, and SRC-3; otherwise known as NCOA1, NCOA2, and NCOA3, respectively), which modulate a wide spectrum of physiological responses and clinicopathologies. Such pleiotropy is achieved through their inherent structural complexity, which allows this coregulator class to control both nuclear receptor and non-nuclear receptor signaling. As observed in other physiologic systems, members of the SRC family have recently been shown to play pivotal roles in uterine biology and pathobiology. In the murine uterus, SRC-1 is required to launch a full steroid hormone response, without which endometrial decidualization is markedly attenuated. From "dovetailing" clinical and mouse studies, an isoform of SRC-1 was recently identified which promotes endometriosis by reprogramming endometrial cells to evade apoptosis and to colonize as endometriotic lesions within the peritoneal cavity. The endometrium fails to decidualize without SRC-2, which accounts for the infertility phenotype exhibited by mice devoid of this coregulator. In related studies on human endometrial stromal cells, SRC-2 was shown to act as a molecular "pacemaker" of the glycolytic flux. This finding is significant because acceleration of the glycolytic flux provides the necessary bioenergy and biomolecules for endometrial stromal cells to switch from quiescence to a proliferative phenotype, a critical underpinning in the decidual progression program. Although studies on uterine SRC-3 function are in their early stages, clinical studies provide tantalizing support for the proposal that SRC-3 is causally linked to endometrial hyperplasia as well as with endometrial pathologies in patients diagnosed with polycystic ovary syndrome. This proposal is now driving the development and application of innovative technologies, particularly in the mouse, to further understand the functional role of this elusive uterine coregulator in normal and abnormal physiologic contexts. Because dysregulation of this coregulator triad potentially presents a triple threat for increased risk of subfecundity, infertility, or endometrial disease, a clearer understanding of the individual and combinatorial roles of these coregulators in uterine function is urgently required. This minireview summarizes our current understanding of uterine SRC function, with a particular emphasis on the next critical questions that need to be addressed to ensure significant expansion of our knowledge of this underexplored field of uterine biology.


Assuntos
Coativadores de Receptor Nuclear/fisiologia , Doenças Uterinas/genética , Útero/fisiologia , Animais , Decídua/metabolismo , Implantação do Embrião/genética , Feminino , Humanos , Camundongos , Família Multigênica , Gravidez , Transdução de Sinais/genética , Útero/fisiopatologia
15.
Biol Reprod ; 90(4): 75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24571987

RESUMO

Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)-a member of the p160/SRC family of coregulators-in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) [control]) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Decídua/citologia , Coativador 2 de Receptor Nuclear/genética , Células Estromais/citologia , Animais , Decídua/fisiologia , Feminino , Humanos , Camundongos , Camundongos Mutantes , Coativador 2 de Receptor Nuclear/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Progesterona/metabolismo , RNA Interferente Pequeno/genética , Células Estromais/fisiologia , Transcrição Gênica/fisiologia , Transcriptoma/fisiologia , Útero/citologia , Útero/fisiologia
16.
Front Endocrinol (Lausanne) ; 15: 1336496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559689

RESUMO

Immune dysfunction is one of the central components in the development and progression of endometriosis by establishing a chronic inflammatory environment. Western-style high-fat diets (HFD) have been linked to greater systemic inflammation to cause metabolic and chronic inflammatory diseases, and are also considered an environmental risk factor for gynecologic diseases. Here, we aimed to examine how HFD cause an inflammatory environment in endometriosis and discern their contribution to endometriotic-associated hyperalgesia. Our results showed that HFD-induced obesity enhanced abdominal hyperalgesia that was induced by endometriotic lesions. Peritoneal inflammatory macrophages and cytokine levels increased by lesion induction were elevated by chronic exposure to HFD. Increased expression of pain-related mediators in the dorsal root ganglia was observed after lesion induction under the HFD condition. Although HFD did not affect inflammatory macrophages in the peritoneal cavity without lesion induction, the diversity and composition of the gut microbiota were clearly altered by HFD as a sign of low-grade systemic inflammation. Thus, HFD alone might not establish a local inflammatory environment in the pelvic cavity, but it can contribute to further enhancing chronic inflammation, leading to the exacerbation of endometriosis-associated abdominal hyperalgesia following the establishment and progression of the disease.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/complicações , Endometriose/metabolismo , Hiperalgesia/etiologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Abdome
17.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562843

RESUMO

Recurrent pregnancy loss (RPL), characterized by two or more failed clinical pregnancies, poses a significant challenge to reproductive health. In addition to embryo quality and endometrial function, proper oviduct function is also essential for successful pregnancy establishment. Therefore, structural abnormalities or inflammation resulting from infection in the oviduct may impede the transport of embryos to the endometrium, thereby increasing the risk of miscarriage. However, the precise cellular mechanisms that maintain the structural and functional integrity of the oviduct are not studied yet. Here, we report that autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable embryo transport. Specifically, the loss of the autophagy-related gene, Atg14 in the oviduct causes severe structural abnormalities compromising its cellular plasticity and integrity leading to the retention of embryos. Interestingly, the selective loss of Atg14 in oviduct ciliary epithelial cells did not impact female fertility, highlighting the specificity of ATG14 function in distinct cell types within the oviduct. Mechanistically, loss of Atg14 triggered unscheduled pyroptosis leading to inappropriate embryo retention and impeded embryo transport in the oviduct. Finally, pharmacological activation of pyroptosis in pregnant mice led to an impairment in embryo transport. Together, we found that ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport from the oviduct to uterus for the successful implantation. Of clinical significance, these findings provide possible insights on the underlying mechanism(s) of early pregnancy loss and might aid in developing novel prevention strategies using autophagy modulators.

18.
Nat Commun ; 15(1): 1947, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431630

RESUMO

Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.


Assuntos
Endometriose , Proteínas de Neoplasias , Receptores de Esteroides , Animais , Feminino , Humanos , Camundongos , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Proteínas de Neoplasias/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Esteroides/metabolismo
20.
Autophagy ; : 1-3, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405371

RESUMO

Autophagy plays an important role in the normal growth and morphogenesis of a variety of tissues. Its role in uterine maturation, however, is not fully characterized. Recently, we reported that BECN1 (Beclin1)-dependent autophagy, but not apoptosis, is crucial for stem cell-mediated endometrial programming and the establishment of pregnancy in mice. Upon genetic and pharmacological inhibition of BECN1-mediated autophagy, female mice displayed severe endometrial structural and functional defects leading to infertility. Specifically, conditional loss of Becn1 in the uterus induces apoptosis and results in the gradual loss of endometrial progenitor stem cells. Importantly, the restoration of BECN1-driven autophagy, but not apoptosis in Becn1 conditionally ablated mice promoted normal uterine adenogenesis and morphogenesis. Overall, our findings emphasize the critical role of intrinsic autophagy in endometrial homeostasis and on the molecular underpinnings of uterine differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA