Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Analyst ; 149(7): 2097-2102, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38421038

RESUMO

In this work, we developed a rapid and sensitive label-free ratiometric fluorescent (FL) probe for the detection of bleomycin (BLM). The probe consists of a DNA sequence (D6) and two fluorophore groups, 2-amino-5,6,7-trimethyl-1,8-naphthalene (ATMND) and SYBR Green I (SGI). The D6 sequence could be folded into a three-way junction structure containing a C-C mismatch position in the junction pocket. The unique "Y" structure not only could entrap ATMND in the mismatch pocket with high affinity, leading to FL quenching at 408 nm, but also embed SGI in the grooves of the double-stranded portion, resulting in FL enhancement at 530 nm. In the presence of BLM-Fe(II), the "Y" structure of D6 was destroyed due to the specific cleavage of the BLM recognition site, the 5'-GT-3' site in D6. This caused the release of ATMND and SGI and thus the ratiometric signal change of FL enhancement by ATMND and FL quenching by SGI. Under optimal conditions, the ratiometric probe exhibited a linear correlation between the intensity ratio of F408/F530 and the concentration of BLM in the range of 0.5-1000 nM, with a detection limit of 0.2 nM. In addition, the probe was applied to detect BLM in human serum samples with satisfactory results, indicating its good clinical application potential.


Assuntos
Benzotiazóis , Bleomicina , Diaminas , Corantes Fluorescentes , Quinolinas , Humanos , Corantes Fluorescentes/química , Limite de Detecção , Espectrometria de Fluorescência/métodos
2.
Anal Chem ; 95(23): 8879-8888, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252785

RESUMO

CRISPR/Cas12a has been believed to be powerful in molecular detection and diagnostics due to its amplified trans-cleavage feature. However, the activating specificity and multiple activation mechanisms of the Cas12a system are yet to be elucidated fully. Herein, a "synergistic activator effect" is discovered, which supports an activation mechanism that a synergistic incorporation of two short ssDNA activators can promote the trans-cleavage of CRISPR/Cas12a, while either of them is too short to work independently. As a proof-of-concept example, the synergistic activator-triggered CRISPR/Cas12a system has been successfully harnessed in the AND logic operation and the discrimination of single-nucleotide variants, requiring no signal conversion elements or other amplified enzymes. Moreover, a single-nucleotide specificity has been achieved for the detection of single-nucleotide variants by pre-introducing a synthetic mismatch between crRNA and the "helper" activator. The finding of "synergistic activator effect" not only provides deeper insight into CRISPR/Cas12a but also may facilitate its expanded application and power the exploration of the undiscovered properties of other CRISPR/Cas systems.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA de Cadeia Simples , Nucleotídeos , RNA Guia de Sistemas CRISPR-Cas
3.
Anal Chem ; 95(19): 7723-7734, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37133978

RESUMO

Accurate identification of cancer cells is an essential prerequisite for cancer diagnosis and subsequent effective curative interventions. The logic-gate-assisted cancer imaging system that allows a comparison of expression levels between biomarkers, rather than just reading biomarkers as inputs, returns a more comprehensive logical output, improving its accuracy for cell identification. To fulfill this key criterion, we develop a compute-and-release logic-gated double-amplified DNA cascade circuit. This novel system, CAR-CHA-HCR, consists of a compute-and-release (CAR) logic gate, a double-amplified DNA cascade circuit (termed CHA-HCR), and a MnO2 nanocarrier. CAR-CHA-HCR, a novel adaptive logic system, is designed to logically output the fluorescence signals after computing the expression levels of intracellular miR-21 and miR-892b. Only when miR-21 is present and its expression level is above the threshold CmiR-21 > CmiR-892b, the CAR-CHA-HCR circuit performs a compute-and-release operation on free miR-21, thereby outputting enhanced fluorescence signals to accurately image positive cells. It is capable of comparing the relative concentrations of two biomarkers while sensing them, thus allowing accurate identification of positive cancer cells, even in mixed cell populations. Such an intelligent system provides an avenue for highly accurate cancer imaging and is potentially envisioned to perform more complex tasks in biomedical studies.


Assuntos
MicroRNAs , Neoplasias , Compostos de Manganês , Óxidos , DNA , MicroRNAs/genética , Biomarcadores , Neoplasias/diagnóstico por imagem
4.
Mikrochim Acta ; 190(12): 487, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010451

RESUMO

A new ratiometric fluorescent probe for efficient determination of ALP was developed. The probe was constructed by combining Ce3+-crosslinked copper nanoclusters (Ce3+-CuNCs) which exhibit the aggregation-induced emission (AIE) feature with carbon dots (CDs). The introduction of phosphate (Pi) induced the generation of CePO4 precipitation, resulting in significant decrease of fluorescence emission of CuNCs at 634 nm. At the same time, the fluorescence of CDs at 455 nm was obviously enhanced, thus generating ratiometric fluorescence response. Based on the fact that the hydrolysis of pyrophosphate (PPi) by ALP can produce Pi, the CD/Ce3+-CuNCs ratiometric probe was successfully used to determine ALP. A good linear relationship between the ratiometric value of F455/F634 and ALP concentrations ranging from 0.2 to 80 U·L- 1 was obtained, with a low detection limit of 0.1 U·L- 1. The ratiometric responses of the probe resulted in the visible fluorescence color change from orange red to blue with the increase of ALP concentration. The smartphone-based RGB recognition of the fluorescent sample images was used for ALP quantitative determination. A novel ratiometric fluorescent system based on Ce3+-CuNCs with AIE feature and CDs were constructed for efficient detection of ALP.


Assuntos
Pontos Quânticos , Cobre , Fosfatase Alcalina , Carbono , Fluorescência
5.
Mikrochim Acta ; 190(1): 6, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471087

RESUMO

A nanozyme sensor array based on the ssDNA-distensible C3N4 nanosheet sensor elements for discriminating multiple mycotoxins commonly existing in contaminated cereals has been explored. The sensor array exploited (a) three DNA nonspecific sequences (A40, T40, C40) absorbed on the C3N4 nanosheets as sensor elements catalyzing the oxidation of TMB; (b) the presence of five mycotoxins affected the catalytic activity of three nanozymes with various degrees. The parameter (A0-A) was employed as the signal output to obtain the response patterns for different mycotoxins with the same concentration where A0 and A were the absorption peak values at 650 nm of oxTMB in the absence and presence of target mycotoxins, respectively. After the raw data was subjected to principal component analysis, 3D canonical score plots were obtained. The sensor array was capable of separating five mycotoxins from each other with 100% accuracy even if the concentration of the mycotoxins was as low as 1 nM. Moreover, the array performed well in discriminating the mycotoxin mixtures with different ratios. Importantly, the practicality of this sensor array was demonstrated by discriminating the five mycotoxins spiking in corn-free samples in 3D canonical score plots, validating that the sensor array can act as a flexible detection tool for food safety. A nanozyme sensor array was developed based on the ssDNA-distensible C3N4 NSs sensor elements for discriminating muitiple mycotoxins.


Assuntos
Micotoxinas , Micotoxinas/análise , Grão Comestível/química , DNA de Cadeia Simples , Zea mays
6.
Mikrochim Acta ; 189(2): 55, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006333

RESUMO

A novel ratiometric fluorescence nanoprobe based on long-wavelength emission carbon dots (CDs) was designed for high sensitive and selective detection of Zn2+. The CDs were conveniently prepared by a one-step solvothermal treatment of formamide and glutathione (GSH). Under single excitation wavelength (420 nm), the obtained CDs exhibit three emission peaks at 470, 650, and 685 nm, respectively. For the long-wavelength emission region of the CDs, the fluorescence at 685 nm can be quenched with different levels upon the addition of most metal ions. However, the presence of Zn2+ not only results in the fluorescence quenching at 685 nm effectively but also enhances at 650 nm remarkably, which may be due to the formation of CD-Zn2+ chelate complex inducing the dispersion of CDs aggregates and changes in the group distribution on the surface of CDs. Taking the advantage of the unique fluorescence response induced by Zn2+, the prepared CDs were successfully employed as nanoprobe for self-ratiometric fluorescence determination of Zn2+ with F650/F685 as signal output. A good linear relationship in the concentration range 0.01 to 2 µM, and a detection limit as low as 5.1 nM has been obtained. The ratiometric nanoprobe was successfully applied to  Zn2+ determination  in human serum samples.


Assuntos
Carbono/química , Nanoestruturas/química , Pontos Quânticos/química , Zinco/química , Corantes Fluorescentes , Microscopia Eletrônica de Transmissão , Sensibilidade e Especificidade , Difração de Raios X
7.
Anal Chem ; 93(23): 8219-8227, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34075758

RESUMO

Facile and sensitive determination of formaldehyde (FA) in indoor environments still remains challenging. Herein, a fluorescent probe, termed PHN@MOF, was synthesized by embedding the fluorescent molecule of N-propyl-4-hydrazine-naphthalimide (PHN) into a metal-organic framework (MOF) for sensitive and visual monitoring of FA. The hydrazine group of PHN acts as the specific reaction group with FA based on the condensation reaction. The host of MOF (UiO-66-NH2) offers the surrounding confinement space required for the reaction. Owing to the enrichment effect and molecular sieve selection of UiO-66-NH2 to FA, PHN@MOF, compared with free PHN, exhibits very high sensitivity and selectivity based on space confinement-induced sensitivity enhancement (SCISE). Moreover, the fluorescence of UiO-66-NH2 offers a reference signal for FA detection. Using this ratiometric fluorescent PHN@MOF probe, a colorimetric gel plate and test paper were developed and used to visually monitor FA in air.


Assuntos
Estruturas Metalorgânicas , Naftalimidas , Aldeídos , Corantes Fluorescentes , Espectrometria de Fluorescência
8.
Analyst ; 146(9): 2862-2870, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33890963

RESUMO

The development of sensitive methods for alkaline phosphatase (ALP) activity analysis is an important analytical topic. Based on the stimulus-responsive lanthanide coordination polymer, a simple ratiometric fluorescence sensing strategy was proposed to detect ALP activity. A carbon dot (CD) doped fluorescent supramolecular lanthanide coordination polymer (CDs@Tb-GMP) was prepared with Tb3+ and the ligand guanine single nucleotide (GMP). To construct a ratiometric fluorescence biosensor, the fluorescence of Tb-GMP was used as a response signal, and the fluorescence of CDs was used as a reference signal due to its good stability. When excited at 290 nm, the polymer network Tb-GMP emits characteristic fluorescence at 545 nm, while the CDs encapsulated in the polymer network emit fluorescence at 370 nm. After adding ALP to the system, the substrate GMP can be hydrolyzed by ALP, resulting in the destruction of the polymer network. Accordingly, the fluorescence of Tb-GMP significantly decreased, while the fluorescence of CDs slightly increased due to their release from the polymer network. By comparing the relationship between the fluorescence intensity ratio of the two signals and the concentration of ALP, sensitive detection of ALP could be achieved with the linear range from 0.5 to 80 U L-1 and a detection limit of 0.13 U L-1. Furthermore, the proposed ratiometric sensing system was applied to the detection of ALP in human serum samples with desirable results, indicating potential application in clinical diagnosis.


Assuntos
Elementos da Série dos Lantanídeos , Nanocompostos , Fosfatase Alcalina , Carbono , Corantes Fluorescentes , Humanos , Polímeros
9.
Mikrochim Acta ; 188(8): 259, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34268632

RESUMO

A novel ratiometric fluorescence nanoprobe based on carbon dots (CDs) and Cu nanoclusters (CuNCs) was designed for the label-free determination of uric acid (UA). The metal-organic framework (MOF) encapsulated CuNCs (ZIF-CuNC), and nitrogen-doped CDs can self-assemble into well-defined spherical nanocomposites (CD@ZIF-CuNC) due to physical adsorption. Under the excitation wavelength of 360 nm, the CD@ZIF-CuNC nanocomposites exhibit two evident intrinsic emissions peaked at 460 nm (CDs) and 620 nm (ZIF-CuNC), respectively. In the presence of H2O2, the fluorescence of CD@ZIF-CuNC at 620 nm is quenched remarkably within 1 min, while little effect on the emission at 460 nm is observed. Therefore, taking the fluorescence at 620 nm as the report signal and 460 nm as the reference signal, ratiometric quantitative determination of H2O2 was achieved with a linear range of 1-100 µM and a detection limit of 0.30 µM. The CD@ZIF-CuNC nanoprobe was successfully applied to the determination of UA that is catalyzed by uricase to produce H2O2, obtaining the linear range of 1-30 µM and the detection limit of 0.33 µM. Eventually, this strategy has been successfully applied to the determination of UA in human urine samples. A novel and convenient CDs@ZIF-CuNCs-based nanoplatform was constructed for sensitive ratiometric fluorescence determination of UA.


Assuntos
Corantes Fluorescentes/química , Nanocompostos/química , Ácido Úrico/urina , Carbono/química , Cobre/química , Humanos , Peróxido de Hidrogênio/análise , Limite de Detecção , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos
10.
Anal Chem ; 92(4): 3366-3372, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31995981

RESUMO

Mercury detection remains an important task because of its high toxicity. Herein a new dual-signal probe based on a boric acid (BA)-functionalized lanthanide metal-organic framework (BA-Eu-MOF) was developed for the detection of Hg2+ and CH3Hg+ ions for the first time. The BA-Eu-MOF was synthesized by coordination of Eu3+ with 5-boronobezene-1, 3-dicarboxylic acid (5-bop) through a one-pot method. The 5-bop ligand not only acted as the "antenna" to sensitize the luminescence of Eu3+ but also provided reaction sites for Hg2+ and CH3Hg+. Owing to the electron-withdrawing effect of the BA group, the "antenna" effect of the ligand was passivating and the BA-Eu-MOF showed weak red emission in water. Upon addition of Hg2+ or CH3Hg+ into the system, a transmetalation reaction took place, i.e., BA groups were replaced by Hg2+ or CH3Hg+; therefore, the "antenna" effect of the ligand was triggered, leading to the enhancement of red emission. As Hg2+ or CH3Hg+ concentration increased, the red emission was gradually enhanced, and the color change was also observed with the naked eye under 365 nm ultraviolet light. Owing to the porous characteristics and the surface effect of the MOF, as well as the unique transmetalation reaction between the BA group and Hg2+ or CH3Hg+, the developed nanoprobe showed excellent characteristics for simultaneous detection of Hg2+ and CH3Hg+, such as simple preparation, convenient operation, "turn-on" signal output, high sensitivity, and selectivity. The unique features of the BA-Eu-MOF make it an attractive probe for monitoring Hg2+ and CH3Hg+.

11.
Analyst ; 145(19): 6254-6261, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985630

RESUMO

Determination of glutathione (GSH) is closely related to the clinical diagnosis of many diseases. Thus, a fluorescent and colorimetric dual-readout strategy for the sensitive determination of glutathione was proposed. The mesoporous silica nanoparticle-gold nanocluster (MSN-AuNC) nanocomposites with significantly enhanced emission and effectively improved photostability characteristics were used as fluorescent probes. Based on the inner filter effect (IFE), the fluorescence of MSN-AuNCs at 570 nm can be effectively quenched by oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) with absorption in the wavelength ranges of 330-470 nm and 500-750 nm. However, the addition of GSH could cause the reduction of blue oxTMB to colorless TMB, resulting in the inhibition of IFE and the recovery of the fluorescence of MSN-AuNCs. Therefore, using oxTMB as both quencher and color indicator, a dual-readout oxTMB/MSN-AuNC sensing system for the sensitive determination of GSH was constructed. As signal amplification is caused by the fluorescence enhancement of MSN-AuNCs, the detection limits as low as 0.12 µM and 0.34 µM can be obtained for fluorescent and colorimetric assay, respectively. This method may not only offer a new idea for the sensitive and effective determination of GSH, but also broaden the applications of AuNCs in fluorescent and colorimetric dual-readout bioanalysis.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Benzidinas , Colorimetria , Glutationa , Ouro , Limite de Detecção , Dióxido de Silício
12.
Analyst ; 145(4): 1362-1367, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32040108

RESUMO

Although the potential of gold amalgam as a nanoenzyme has been demonstrated, its practical utility has been limited by its low catalytic activity caused by the aggregation of Au nanoparticles (Au NPs). Thus, there is a need to further engineer Au NPs to prevent aggregation and then to achieve higher enzyme activities for the detection of Hg2+ ions. Metal organic frameworks (MOFs), as one kind of promising material, have attracted particular attention due to their unique characteristics of uniform cavities and very high porosity. Herein, a hybrid material of Au nanoparticles and a MOF (AuNP@MOF), constructed by immobilization of Au NPs uniformly on the cavity surface of an iron-5,10,15,20-tetrakis (4-carboxyl)-21H,23H-porphyrin-based MOF (Fe-TCPP-MOF), has been successfully synthesized. Based on Hg2+ ion triggered Au catalysis of methylene blue (MB) reduction, a colorimetric method for highly sensitive and selective detection of Hg2+ ions has been established. The Hg2+ ions were first bound to the Au NP surface to form gold amalgam, and then the catalytic activity of Au NPs was initiated. This detection method showed the advantages of a fast response time, and high sensitivity and selectivity. The response time and the limit of detection were as low as 2 s and 103 pM, respectively, benefiting from the uniform cavities and the large specific surface area of Fe-TCPP-MOF, which ensure: (1) uniform dispersion of the Au NPs on the surface of the cavity; and (2) a higher chance of interaction of mercury and MB owing to the gathering effect of Fe-TCPP-MOF.

13.
Anal Chem ; 91(19): 12453-12460, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31466442

RESUMO

Ferric ion (Fe3+) plays a vital role in cellular homeostasis. However, the detection of Fe3+ with rhodamine B (RhB) has potential problems, such as poor selectivity and low photostability. To address these problems, we rationally designed an RhB@MOF nanocomposite-based "on-off-on" fluorescent switching nanoprobe for highly sensitive and selective detection of Fe3+ and ascorbic acid. This RhB@MOF nanoprobe was prepared through a facile one-pot synthesis. Here MOF served as a selectivity regulator for the detection of Fe3+. By embedding RhB into the porous crystalline MOF, enhanced photostability and fluorescence lifetime of RhB to Fe3+ were achieved. The as-prepared RhB@MOF was demonstrated to be an ultrasensitive and selective nanoprobe for the detection of Fe3+ in human serum and ascorbic acid in rat brain microdialysate. Furthermore, inner filter effect (IFE) and photoinduced electron transfer (PET) were proposed and discussed to explain the selectivity and sensitivity of RhB to Fe3+ against other interfering substances. Our novel "on-off-on" nanoprobe provides insight into the rational design of MOF-based biosensors for selective and sensitive detection of analytes.


Assuntos
Ácido Ascórbico/análise , Ferro/análise , Estruturas Metalorgânicas/química , Animais , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Encéfalo/metabolismo , Transporte de Elétrons , Humanos , Ferro/sangue , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Conformação Molecular , Nanocompostos/química , Ratos , Rodaminas/química
14.
Mikrochim Acta ; 186(8): 490, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267219

RESUMO

A photoelectrochemical (PEC) method has been developed for sensitive detection of trypsin. It is based on the use of a composite consisting of MoS2 nanosheets and TiO2 nanorods (MoS2-TiO2). The material has a high specific surface area, superior electrical conductivity, excellent biocompatibility and good band gap matching. The composite was synthesized by a one-pot method using TiO2 as a template. This results in a uniform distribution of the MoS2 nanosheets (<5 layers) in the composite. If the composite, placed on an indium tin oxide (ITO) electrode, is coupled to apoferritin, the photocurrent response decreases due to the insulating effect of the protein. Trypsin, in acting as an alkaline protease, decomposes the apoferritin. This results in the recovery of the PEC signal. Attractive features of this PEC method include (a) a superior PEC signal, (b) sensor stability, (c) simple operation, and (d) the lack of any additional modifications of the biosensor. This warrants high sensitivity, reproducibility, repeatability and practicality. The ITO sensor has a linear response in the 1 to 1000 ng·mL-1 trypsin concentration range and a 0.82 ng·mL-1 detection limit. The assay was applied to the determination of trypsin in spiked serum samples and gave satisfactory results. Graphical abstract Schematic presentation of an indium tin oxide (ITO)/MoS2-TiO2 sensor for detecting trypsin. The PEC signal was decreased after immobilization of apoferritin (APO) on the modified ITO. Trypsin catalytically hydrolyzes APO specifically and induces the PEC signal to recover.


Assuntos
Técnicas Biossensoriais , Tripsina/análise , Catálise , Dissulfetos/química , Dissulfetos/efeitos da radiação , Técnicas Eletroquímicas , Eletrodos , Humanos , Luz , Molibdênio/química , Molibdênio/efeitos da radiação , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Processos Fotoquímicos , Compostos de Estanho/química , Titânio/química , Titânio/efeitos da radiação , Tripsina/sangue , Tripsina/química
15.
Mikrochim Acta ; 186(11): 740, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686245

RESUMO

A luminescent metal organic framework (LMOF) of type UiO-66-NH2 was chosen for specific and sensitive detection of trace levels of hypochlorite. Hypochlorite causes the quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm), and this finding forms the basis for a fluorometric assay for hypochlorite. The method overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite. Compared with other fluorescent probes for sensing hypochlorite, UiO-66-NH2 has a comparable detection limit of 0.3 µmol L-1 and a broad linearity relationship in the range of 1-8 µmol L-1. The probe was successfully applied to the detection of hypochlorite in complex water samples and living Hela cells. Graphical abstract Schematic representation of hypochlorite induced quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm) through energy transfer. It overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Estruturas Metalorgânicas/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Água Potável/análise , Transferência de Energia , Fluorescência , Células HeLa , Humanos , Limite de Detecção , Nanopartículas/química , Piscinas , Poluentes Químicos da Água/análise
16.
Analyst ; 143(22): 5474-5480, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30288517

RESUMO

Since bleomycins (BLMs) play a prominent role in the clinical treatment of various cancers, the development of convenient and sensitive detection assays for BLM is of great significance in cancer therapy and related biological mechanism research. Here, taking advantage of the easily controllable and excitation of the G-triplex DNA structure, we reported a facile, label-free G-triplex based functional molecular beacon (G3MB) sensing system for fluorescence "turn-on" detection of BLM based on BLM-Fe(ii) mediated DNA strand scission. In the presence of BLM, the stable hairpin structure of G3MB undergoes an irreversible cleavage in the loop region that contains a 5'-GT-3' recognition site for BLM. The released G-tract DNA fragment self-assembles into a G-triplex-ThT complex showing a strong fluorescence. Owing to the effective locking of G-tracts in the stem of the G3MB and the specific DNA strand scission by BLM which is like a key for the release of G-tracts, the assay shows high sensitivity and selectivity with a detection limit of 0.2 nM. In addition, satisfactory results were obtained for the detection of BLM in human serum samples. Critically, the convenient "mix-and-detect" protocol, fast response and no need for modifying DNA offered a potential application of the proposed strategy for BLM assay in biomedical and clinical studies.


Assuntos
Antineoplásicos/sangue , Bleomicina/sangue , DNA/química , Antineoplásicos/química , Sequência de Bases , Benzotiazóis/química , Bleomicina/química , Cloretos/química , DNA/genética , Compostos Férricos/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Sequências Repetidas Invertidas , Limite de Detecção , Espectrometria de Fluorescência/métodos
17.
Analyst ; 143(22): 5388-5394, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30295305

RESUMO

Heparin (Hep) is widely used as a major anticoagulant in surgery. Simple and sensitive methods capable of quantitative detection of Hep are desired for better regulating its clinical use. Herein, a novel nanoassembly of amino-functionalized mesoporous silica nanoparticle-gold nanoclusters (MSN-AuNCs) with remarkable emission enhancement characteristics for sensitive fluorescence detection of Hep is developed. The electrostatic interaction between the positively charged amino-functionalized MSNs and the AuNC-stabilizing surface ligands triggers the self-assembly of MSN-AuNC nanocomposites which exhibit more than 5-fold fluorescence emission enhancement. However, the presence of negatively charged Hep inhibits the emission enhancement phenomenon due to the effective wrapping of Hep on the surface of MSNs, which blocks the interaction between AuNCs and MSNs. Benefitting from the remarkable emission enhancement and the competing binding of Hep, facile and ultrasensitive detection of Hep can be realized with a detection limit as low as 2 nM. Moreover, the successful application of the proposed method for detection of Hep in human serum samples shows promise for clinical applications.


Assuntos
Ouro/química , Heparina/sangue , Nanopartículas Metálicas/química , Nanocompostos/química , Dióxido de Silício/química , Espectrometria de Fluorescência/métodos , Fluorescência , Humanos , Limite de Detecção
18.
Mikrochim Acta ; 185(9): 403, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30083864

RESUMO

The authors describe a molecular beacon-based fluorescent probe for the determination of the cancer drug bleomycin (BLM). The probe was tagged with DNA-templated silver nanoclusters (DNA-AgNCs) and guanine-rich sequences (GRSs) at two terminals serving as signal reporter with a loop. In the absence of the BLM-iron(II) complex [BLM-Fe(II)], the probe has a hairpin shape and displays strong fluorescence because the AgNCs are close to the GRSs. In the presence of the BLM-Fe(II) complex, it will selectively cleave the probe at the 5'-GC-3' scission site of the loop. This displaces the AgNCs away from the GRSs and causes a decrease in fluorescence, best measured at excitation/emission wavelengths of 565/623 nm. This effect enables BLM to be detected with a detection limit as low as 33 pM, which was 1-3 orders of magnitude more sensitive than most of the previous reports. The probe was applied for the determination of BLM in spiked human serum samples, and excellent performance was achieved. In our perception, the method described here represents a promising tool for highly sensitive and specific analysis of BLM during cancer treatment. Graphical abstract Schematic of a highly sensitive fluorometric assay forbleomycin. It is based on molecular beacon-templated silver nanoclusters and DNA scission.


Assuntos
Bleomicina/análise , DNA/química , Corantes Fluorescentes/química , Nanopartículas Metálicas , Prata , Técnicas Biossensoriais/métodos , Bleomicina/análogos & derivados , Bleomicina/química , Complexos de Coordenação/química , Humanos , Ligantes , Limite de Detecção , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos
19.
Chemistry ; 23(21): 4986-4989, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28240399

RESUMO

It is highly attractive to develop non-noble-metal nanoarray architecture as a 3D-catalyst electrode for molecular detection due to its large specific surface area and easy accessibility to target molecules. Here, we report the development of a copper-nitride nanowires array on copper foam (Cu3 N NA/CF) as a dual-functional catalyst electrode for efficient glucose oxidation in alkaline solutions and hydrogen peroxide (H2 O2 ) reduction in neutral solutions. Electrochemical tests indicate that such Cu3 N NA/CF possesses superior non-enzymatic sensing ability toward rapid glucose and H2 O2 detection with high selectivity. At 0.40 V, this sensor offers a high sensitivity of 14 180 µA mm cm-2 for glucose detection, with a wide linear range from 1 µm to 2 mm, a low detection limit of 13 nm (S/N=3), and satisfactory stability and reproducibility. Its application in determining glucose in human blood serum is also demonstrated. Amperometric H2 O2 sensing can also been realized with a sensitivity of 7600 µA mm cm-2 , a linear range from 0.1 µm to 10 mm, and a detection limit of 8.9 nm (S/N=3). This 3D-nanoarray architecture holds great promise as an attractive sensing platform toward electrochemical small molecules detection.

20.
Chemistry ; 23(18): 4435-4441, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28295716

RESUMO

High-performance supercapacitors require the design and development of electrode materials with high conductivity and a large electrolyte-accessible surface area. Here, the use of a conductive NiCoP nanoarray on nickel foam (NiCoP/NF) as a superior pseudocapacitor electrode is demonstrated. This 3D electrode exhibits high areal capacitances of 9.2 and 5.97 F cm-2 at current densities of 2 and 50 mA cm-2 , respectively, with good rate capability and cycling stability. The asymmetric supercapacitor (ASC) device assembled using NiCoP/NF as positive electrode and active carbon as negative electrode delivers a high energy density of 1.16 mWh cm-2 at a power density of 1.6 mW cm-2 with 72 % retention of its initial specific capacitance after 2000 cycles at 50 mA cm-2 . The practical use is further demonstrated with two such ASC devices in series to light six LED indicators and also to drive an alkaline water electro- lyzer using NiCoP/NF as both cathode and anode for hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA