RESUMO
Small noncoding RNA (sRNA) molecules are integral components of the regulatory machinery for many bacterial species and are known to posttranscriptionally regulate metabolic and stress-response pathways, quorum sensing, virulence factors, and more. The Yop-Ysc type III secretion system (T3SS) is a critical virulence component for the pathogenic Yersinia species, and the regulation of this system is tightly controlled at each step from transcription to translocation of effectors into host cells. The contribution of sRNAs to the regulation of the T3SS in Yersinia has been largely unstudied, however. Previously, our lab identified a role for the sRNA chaperone protein Hfq in the regulation of components of the T3SS in the gastrointestinal pathogen Yersinia pseudotuberculosis. Here we present data demonstrating a similar requirement for Hfq in the closely related species Yersinia pestis. Through deep sequencing analysis of the Y. pestis sRNA-ome, we found 63 previously unidentified putative sRNAs in this species. We identified a Yersinia-specific sRNA, Ysr141, carried by the T3SS plasmid pCD1 that is required for the production of multiple T3SS proteins. In addition, we show that Ysr141 targets an untranslated region upstream of yopJ to posttranscriptionally activate the synthesis of the YopJ protein. Furthermore, Ysr141 may be an unstable and/or processed sRNA, which could contribute to its function in the regulation of the T3SS. The discovery of an sRNA that influences the synthesis of the T3SS adds an additional layer of regulation to this tightly controlled virulence determinant of Y. pestis.
Assuntos
Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Yersinia pestis/genética , Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Yersinia pestis/metabolismoRESUMO
A major class of bacterial small, noncoding RNAs (sRNAs) acts by base-pairing with mRNAs to alter the translation from and/or stability of the transcript. Our laboratory has shown that Hfq, the chaperone that mediates the interaction of many sRNAs with their targets, is required for the virulence of the enteropathogen Yersinia pseudotuberculosis. This finding suggests that sRNAs play a critical role in the regulation of virulence in this pathogen, but these sRNAs are not known. Using a deep sequencing approach, we identified the global set of sRNAs expressed in vitro by Y. pseudotuberculosis. Sequencing of RNA libraries from bacteria grown at 26 °C and 37 °C resulted in the identification of 150 unannotated sRNAs. The majority of these sRNAs are Yersinia specific, without orthologs in either Escherichia coli or Salmonella typhimurium. Six sRNAs are Y. pseudotuberculosis specific and are absent from the genome of the closely related species Yersinia pestis. We found that the expression of many sRNAs conserved between Y. pseudotuberculosis and Y. pestis differs in both timing and dependence on Hfq, suggesting evolutionary changes in posttranscriptional regulation between these species. Deletion of multiple sRNAs in Y. pseudotuberculosis leads to attenuation of the pathogen in a mouse model of yersiniosis, as does the inactivation in Y. pestis of a conserved, Yersinia-specific sRNA in a mouse model of pneumonic plague. Finally, we determined the regulon controlled by one of these sRNAs, revealing potential virulence determinants in Y. pseudotuberculosis that are regulated in a posttranscriptional manner.
Assuntos
RNA Bacteriano/genética , RNA não Traduzido/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , RNA Bacteriano/metabolismo , RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie , Transcrição Gênica , Virulência/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologiaRESUMO
UNLABELLED: The cyclic AMP receptor protein (Crp) is a transcriptional regulator that controls the expression of numerous bacterial genes, usually in response to environmental conditions and particularly by sensing the availability of carbon. In the plague pathogen Yersinia pestis, Crp regulates the expression of multiple virulence factors, including components of the type III secretion system and the plasminogen activator protease Pla. The regulation of Crp itself, however, is distinctly different from that found in the well-studied Escherichia coli system. Here, we show that at physiological temperatures, the synthesis of Crp in Y. pestis is positively regulated at the posttranscriptional level. The loss of the small RNA chaperone Hfq results in decreased Crp protein levels but not in steady-state Crp transcript levels, and this regulatory effect occurs within the 5' untranslated region (UTR) of the Crp mRNA. The posttranscriptional activation of Crp synthesis is required for the expression of pla, and decoupling crp from Hfq through the use of an exogenously controlled promoter and 5' UTR increases Pla protein levels as well as partially rescues the growth defect associated with the loss of Hfq. Finally, we show that both Hfq and the posttranscriptional regulation of Crp contribute to the virulence of Y. pestis during pneumonic plague. The Hfq-dependent, posttranscriptional regulation of Crp may be specific to Yersinia species, and thus our data help explain the dramatic growth and virulence defects associated with the loss of Hfq in Y. pestis. IMPORTANCE: The Crp protein is a major transcriptional regulator in bacteria, and its synthesis is tightly controlled to avoid inappropriate induction of the Crp regulon. In this report, we provide the first evidence of Crp regulation in an Hfq-dependent manner at the posttranscriptional level. Our discovery that the synthesis of Crp in Yersinia pestis is Hfq dependent adds an additional layer of regulation to catabolite repression in this bacterium. Our work provides a mechanism by which the plague pathogen links not just the sensing of glucose or other carbon sources but also other signals that influence Crp abundance via the expression of small RNAs to the induction of the Crp regulon. In turn, this allows Y. pestis to fine-tune Crp levels to optimize virulence gene expression during plague infection and may allow the bacterium to adapt to its unique environmental niches.
Assuntos
Proteína Receptora de AMP Cíclico/biossíntese , Regulação Bacteriana da Expressão Gênica , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Peste/microbiologia , Peste/patologia , Temperatura , VirulênciaRESUMO
Endonucleolytic cleavage of mRNA in the daa operon of Escherichia coli is responsible for co-ordinate regulation of genes involved in F1845 fimbrial biogenesis. Cleavage occurs by an unidentified endoribonuclease, is translation dependent and involves a unique recognition mechanism. Here, we present the results of a genetic strategy used to identify factors involved in daa mRNA processing. We used a reporter construct consisting of the daa mRNA processing region fused to the gene encoding green fluorescent protein (GFP). A mutant defective in daa mRNA processing and expressing high levels of GFP was isolated by flow cytometry. To determine the location of mutations, two different genetic approaches, Hfr crosses and P1 transductions, were used. The mutation responsible for the processing defect was subsequently mapped to the 32 min region of the E. coli chromosome. A putative DEAH-box RNA helicase-encoding gene at this position, hrpA, was able to restore the ability of the mutant to cleave daa mRNA. Site-directed mutagenesis of the hrpA regions predicted to encode nucleotide triphosphate binding and hydrolysis functions abolished the ability of the gene to restore the processing defect in the mutant. We propose that HrpA is a novel enzyme involved in mRNA processing in E. coli.