Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Int ; 186: 108504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537584

RESUMO

Insufficient data on nano- and microplastics (NMP) hinder robust evaluation of their potential health risks. Methodological disparities and the absence of established toxicity thresholds impede the comparability and practical application of research findings. The diverse attributes of NMP, such as variations in sizes, shapes, and compositions, complicate human health risk assessment. Although probability density functions (PDFs) show promise in capturing this diversity, their integration into risk assessment frameworks is limited. Physiologically based kinetic (PBK) models offer a potential solution to bridge the gap between external exposure and internal dosimetry for risk evaluation. However, the heterogeneity of NMP poses challenges for accurate biodistribution modeling. A literature review, encompassing both experimental and modeling studies, was conducted to examine biodistribution studies of monodisperse micro- and nanoparticles. The literature search in PubMed and Scopus databases yielded 39 studies that met the inclusion criteria. Evaluation criteria were adapted from previous Quality Assurance and Quality Control (QA-QC) studies, best practice guidelines from WHO (2010), OECD guidance (2021), and additional criteria specific to NMP risk assessment. Subsequently, a conceptual framework for a comprehensive NMP-PBK model was developed, addressing the multidimensionality of NMP particles. Parameters for an NMP-PBK model are presented. QA-QC evaluations revealed that most experimental studies scored relatively well (>0) in particle characterizations and environmental settings but fell short in criteria application for biodistribution modeling. The evaluation of modeling studies revealed that information regarding the model type and allometric scaling requires improvement. Three potential applications of PDFs in PBK modeling of NMP are identified: capturing the multidimensionality of the NMP continuum, quantifying the probabilistic definition of external exposure, and calculating the bio-accessibility fraction of NMP in the human body. A framework for an NMP-PBK model is proposed, integrating PDFs to enhance the assessment of NMP's impact on human health.


Assuntos
Exposição Ambiental , Microplásticos , Nanopartículas , Medição de Risco , Humanos , Microplásticos/análise , Distribuição Tecidual
2.
Environ Pollut ; 356: 124306, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38834150

RESUMO

Micro- and nanoplastics have been detected in environmental compartments from the highest mountains to the deepest seas. They have been shown to be present at almost all trophic levels, and within humans they have been detected in numerous organs and human stool. Whilst their ubiquitous nature is indisputable, little is known about the health risks they may present. Much current research is focussed on the production of test materials with which to perform the necessary health studies. An important aspect of this is the correct storage and suspension of the materials to ensure they remain stable both chemically and with regards to size and shape. In this review, we look at the chemical stability of nine common polymers in a range of liquids; first with the use of commercial compatibility charts and then with a more quantitative approach using Hansen solubility parameters. We then look at stability with regards to particle agglomeration, whether and how stable compositions can be predicted, and which dispersants can be added to increase stability. Finally, we discuss the role of bio-surfactants and the eco-corona and how these may offer a route to both better stability and environmental relevance.


Assuntos
Microplásticos , Tensoativos , Tensoativos/química , Tensoativos/toxicidade , Microplásticos/toxicidade , Humanos , Polímeros/química , Monitoramento Ambiental/métodos , Nanopartículas/toxicidade , Nanopartículas/química
3.
Chemosphere ; 363: 142958, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069102

RESUMO

Recently, Sustainable Aviation Fuel (SAF) blends and novel combustion technologies have been introduced to reduce aircraft engine emissions. However, there is limited knowledge about the impact of combustion technology and fuel composition on toxicity of primary Particulate Matter (PM) emissions, comparable to regulated non-volatile PM (nvPM). In this study, primary PM was collected on filters using a standardised approach, from both a Rich-Quench-Lean (RQL) combustion rig and a bespoke liquid fuelled Combustion Aerosol Standard (CAST) Generator burning 12 aviation fuels including conventional Jet-A, SAFs, and blends thereof. The fuels varied in aromatics (0-25.2%), sulphur (0-3000 ppm) and hydrogen (13.43-15.31%) contents. Toxicity of the collected primary PM was studied in vitro utilising Air-Liquid Interface (ALI) exposure of lung epithelial cells (Calu-3) in monoculture and co-culture with macrophages (differentiated THP-1 cells). Cells were exposed to PM extracted from filters and nebulised from suspensions using a cloud-based ALI exposure system. Toxicity readout parameters were analysed 24 h after exposure. Results showed presence of genotoxicity and changes in gene expression at dose levels which did not induce cytotoxicity. DNA damage was detected through Comet assay in cells exposed to CAST generated samples. Real-Time PCR performed to investigate the expression profile of genes involved in oxidative stress and DNA repair pathways showed different behaviours after exposure to the various PM samples. No differences were found in pro-inflammatory interleukin-8 secretion. This study indicates that primary PM toxicity is driven by wider factors than fuel composition, highlighting that further work is needed to substantiate the full toxicity of aircraft exhaust PM inclusive of secondary PM emanating from numerous engine technologies across the power range burning conventional Jet-A and SAF.


Assuntos
Poluentes Atmosféricos , Aeronaves , Dano ao DNA , Material Particulado , Emissões de Veículos , Material Particulado/toxicidade , Material Particulado/análise , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linhagem Celular , Macrófagos/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Aerossóis/toxicidade , Aerossóis/análise , Aviação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA