Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1270-1282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877178

RESUMO

The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.


Assuntos
Interação Gene-Ambiente , Camundongos Endogâmicos C57BL , Tricuríase , Trichuris , Animais , Trichuris/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Camundongos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Linfócitos B/imunologia , Genótipo , Interferon gama/metabolismo , Linfócitos T/imunologia , Feminino , Masculino
2.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048708

RESUMO

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/genética , Linhagem Celular , Citocinas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/química , Proteínas de Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
3.
Blood ; 143(15): 1496-1512, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170178

RESUMO

ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.


Assuntos
Linfoma Cutâneo de Células T , Síndrome de Sézary , Neoplasias Cutâneas , Infecções Estafilocócicas , Humanos , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/patologia , Staphylococcus aureus , NF-kappa B , Linfócitos T , Enterotoxinas/farmacologia , Linfoma Cutâneo de Células T/patologia , Receptores de Antígenos de Linfócitos T , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Resistência a Medicamentos
4.
Immunity ; 47(6): 1182-1196.e10, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262351

RESUMO

CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Ácidos e Sais Biliares/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença de Crohn/imunologia , Ileíte/imunologia , Mucosa Intestinal/imunologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Adulto , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Transporte Biológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Homeostase/imunologia , Humanos , Ileíte/genética , Ileíte/patologia , Íleo/imunologia , Íleo/patologia , Imunidade nas Mucosas , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Estresse Oxidativo , Transdução de Sinais , Tetra-Hidroisoquinolinas/farmacologia
5.
Blood ; 141(2): 180-193, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122387

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a devastating lymphoid malignancy characterized by the accumulation of malignant T cells in the dermis and epidermis. Skin lesions cause serious symptoms that hamper quality of life and are entry sites for bacterial infection, a major cause of morbidity and mortality in advanced diseases. The mechanism driving the pathological processes that compromise the skin barrier remains unknown. Here, we report increased transepidermal water loss and compromised expression of the skin barrier proteins filaggrin and filaggrin-2 in areas adjacent to TOX-positive T cells in CTCL skin lesions. Malignant T cells secrete mediators (including cytokines such as interleukin 13 [IL-13], IL-22, and oncostatin M) that activate STAT3 signaling and downregulate filaggrin and filaggrin-2 expression in human keratinocytes and reconstructed human epithelium. Consequently, the repression of filaggrins can be counteracted by a cocktail of antibodies targeting these cytokines/receptors, small interfering RNA-mediated knockdown of JAK1/STAT3, and JAK1 inhibitors. Notably, we show that treatment with a clinically approved JAK inhibitor, tofacitinib, increases filaggrin expression in lesional skin from patients with mycosis fungoides. Taken together, these findings indicate that malignant T cells secrete cytokines that induce skin barrier defects via a JAK1/STAT3-dependent mechanism. As clinical grade JAK inhibitors largely abrogate the negative effect of malignant T cells on skin barrier proteins, our findings suggest that such inhibitors provide novel treatment options for patients with CTCL with advanced disease and a compromised skin barrier.


Assuntos
Linfoma Cutâneo de Células T , Dermatopatias , Neoplasias Cutâneas , Humanos , Proteínas Filagrinas , Qualidade de Vida , Linfoma Cutâneo de Células T/patologia , Dermatopatias/patologia , Linfócitos T/patologia , Citocinas/metabolismo , Neoplasias Cutâneas/patologia
6.
Immunol Rev ; 304(1): 111-125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34523719

RESUMO

B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.


Assuntos
MicroRNAs , Linfócitos B , Diferenciação Celular , MicroRNAs/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais
8.
Am J Respir Crit Care Med ; 208(10): 1101-1114, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37677136

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and healthcare costs. Cigarette smoke is a causative factor; however, not all heavy smokers develop COPD. Microbial colonization and infections are contributing factors to disease progression in advanced stages. Objectives: We investigated whether lower airway dysbiosis occurs in mild-to-moderate COPD and analyzed possible mechanistic contributions to COPD pathogenesis. Methods: We recruited 57 patients with a >10 pack-year smoking history: 26 had physiological evidence of COPD, and 31 had normal lung function (smoker control subjects). Bronchoscopy sampled the upper airways, lower airways, and environmental background. Samples were analyzed by 16S rRNA gene sequencing, whole genome, RNA metatranscriptome, and host RNA transcriptome. A preclinical mouse model was used to evaluate the contributions of cigarette smoke and dysbiosis on lower airway inflammatory injury. Measurements and Main Results: Compared with smoker control subjects, microbiome analyses showed that the lower airways of subjects with COPD were enriched with common oral commensals. The lower airway host transcriptomics demonstrated differences in markers of inflammation and tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK, PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally, in a preclinical murine model exposed to cigarette smoke, lower airway dysbiosis with common oral commensals augments the inflammatory injury, revealing transcriptomic signatures similar to those observed in human subjects with COPD. Conclusions: Lower airway dysbiosis in the setting of smoke exposure contributes to inflammatory injury early in COPD. Targeting the lower airway microbiome in combination with smoking cessation may be of potential therapeutic relevance.


Assuntos
Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Disbiose/complicações , RNA Ribossômico 16S , Doença Pulmonar Obstrutiva Crônica/genética , Inflamação/complicações , Lesão Pulmonar/complicações , Pulmão/patologia
9.
Ann Rheum Dis ; 82(4): 507-514, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600182

RESUMO

OBJECTIVES: To investigate the cutaneous microbiome spanning the entire psoriatic disease spectrum, and to evaluate distinguishing features of psoriasis (PsO) and psoriatic arthritis (PsA). METHODS: Skin swabs were collected from upper and lower extremities of healthy individuals and patients with PsO and PsA. Psoriatic patients contributed both lesional (L) and contralateral non-lesional (NL) samples. Microbiota were analysed using 16S rRNA sequencing. RESULTS: Compared with healthy skin, alpha diversity in psoriatic NL and L skin was significantly reduced (p<0.05) and samples clustered separately in plots of beta diversity (p<0.05). Kocuria and Cutibacterium were enriched in healthy subjects, while Staphylococcus was enriched in psoriatic disease. Microbe-microbe association networks revealed a higher degree of similarity between psoriatic NL and L skin compared with healthy skin despite the absence of clinically evident inflammation. Moreover, the relative abundance of Corynebacterium was higher in NL PsA samples compared with NL PsO samples (p<0.05), potentially serving as a biomarker for disease progression. CONCLUSIONS: These findings show differences in diversity, bacterial composition and microbe-microbe interactions between healthy and psoriatic skin, both L and NL. We further identified bacterial biomarkers that differentiate disease phenotypes, which could potentially aid in predicting the transition from PsO to PsA.


Assuntos
Artrite Psoriásica , Microbiota , Psoríase , Humanos , Artrite Psoriásica/microbiologia , RNA Ribossômico 16S/genética , Pele , Bactérias , Biomarcadores
10.
Blood ; 138(16): 1456-1464, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232982

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of mature T-cell neoplasms characterized by the accumulation of clonal malignant CD4+ T cells in the skin. The most common variant of CTCL, mycosis fungoides (MF ), is confined to the skin in early stages but can be accompanied by extracutaneous dissemination of malignant T cells to the blood and lymph nodes in advanced stages of disease. Sézary syndrome (SS), a leukemic form of disease, is characterized by significant blood involvement. Little is known about the transcriptional and genomic relationship between skin- and blood-residing malignant T cells in CTCL. To identify and interrogate malignant clones in matched skin and blood from patients with leukemic MF and SS, we combine T-cell receptor clonotyping with quantification of gene expression and cell surface markers at the single cell level. Our data reveal clonal evolution at a transcriptional and genetic level within the malignant populations of individual patients. We highlight highly consistent transcriptional signatures delineating skin- and blood-derived malignant T cells. Analysis of these 2 populations suggests that environmental cues, along with genetic aberrations, contribute to transcriptional profiles of malignant T cells. Our findings indicate that the skin microenvironment in CTCL promotes a transcriptional response supporting rapid malignant expansion, as opposed to the quiescent state observed in the blood, potentially influencing efficacy of therapies. These results provide insight into tissue-specific characteristics of cancerous cells and underscore the need to address the patients' individual malignant profiles at the time of therapy to eliminate all subclones.


Assuntos
Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/patologia , Células Cultivadas , Humanos , Linfoma Cutâneo de Células T/genética , Análise de Célula Única , Neoplasias Cutâneas/genética , Transcriptoma , Células Tumorais Cultivadas
11.
Cell ; 132(5): 860-74, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18329371

RESUMO

To explore the role of Dicer-dependent control mechanisms in B lymphocyte development, we ablated this enzyme in early B cell progenitors. This resulted in a developmental block at the pro- to pre-B cell transition. Gene-expression profiling revealed a miR-17 approximately 92 signature in the 3'UTRs of genes upregulated in Dicer-deficient pro-B cells; a top miR-17 approximately 92 target, the proapoptotic molecule Bim, was highly upregulated. Accordingly, B cell development could be partially rescued by ablation of Bim or transgenic expression of the prosurvival protein Bcl-2. This allowed us to assess the impact of Dicer deficiency on the V(D)J recombination program in developing B cells. We found intact Ig gene rearrangements in immunoglobulin heavy (IgH) and kappa chain loci, but increased sterile transcription and usage of D(H) elements of the DSP family in IgH, and increased N sequence addition in Igkappa due to deregulated transcription of the terminal deoxynucleotidyl transferase gene.


Assuntos
Diversidade de Anticorpos , Linfócitos B/citologia , Sobrevivência Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regiões 3' não Traduzidas/química , Regiões 3' não Traduzidas/metabolismo , Animais , Northern Blotting , Perfilação da Expressão Gênica , Rearranjo Gênico do Linfócito B , Imunoglobulinas/genética , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III , Organismos Livres de Patógenos Específicos
12.
Nat Methods ; 16(5): 409-412, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011186

RESUMO

Multimodal single-cell assays provide high-resolution snapshots of complex cell populations, but are mostly limited to transcriptome plus an additional modality. Here, we describe expanded CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing (ECCITE-seq) for the high-throughput characterization of at least five modalities of information from each single cell. We demonstrate application of ECCITE-seq to multimodal CRISPR screens with robust direct single-guide RNA capture and to clonotype-aware multimodal phenotyping of cancer samples.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Camundongos , Células NIH 3T3 , RNA Guia de Cinetoplastídeos/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
13.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33622961

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19). There is a dire need for novel effective antivirals to treat COVID-19, as the only approved direct-acting antiviral to date is remdesivir, targeting the viral polymerase complex. A potential alternate target in the viral life cycle is the main SARS-CoV-2 protease 3CLpro (Mpro). The drug candidate PF-00835231 is the active compound of the first anti-3CLpro regimen in clinical trials. Here, we perform a comparative analysis of PF-00835231, the pre-clinical 3CLpro inhibitor GC-376, and the polymerase inhibitor remdesivir, in alveolar basal epithelial cells modified to express ACE2 (A549+ACE2 cells). We find PF-00835231 with at least similar or higher potency than remdesivir or GC-376. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps in A549+ACE2 cells and validates PF-00835231's early time of action. In a model of the human polarized airway epithelium, both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 at low micromolar concentrations. Finally, we show that the efflux transporter P-glycoprotein, which was previously suggested to diminish PF-00835231's efficacy based on experiments in monkey kidney Vero E6 cells, does not negatively impact PF-00835231 efficacy in either A549+ACE2 cells or human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective SARS-CoV-2 antiviral and addresses concerns that emerged based on prior studies in non-human in vitro models.Importance:The arsenal of SARS-CoV-2 specific antiviral drugs is extremely limited. Only one direct-acting antiviral drug is currently approved, the viral polymerase inhibitor remdesivir, and it has limited efficacy. Thus, there is a substantial need to develop additional antiviral compounds with minimal side effects and alternate viral targets. One such alternate target is its main protease, 3CLpro (Mpro), an essential component of the SARS-CoV-2 life cycle processing the viral polyprotein into the components of the viral polymerase complex. In this study, we characterize a novel antiviral drug, PF-00835231, which is the active component of the first-in-class 3CLpro-targeting regimen in clinical trials. Using 3D in vitro models of the human airway epithelium, we demonstrate the antiviral potential of PF-00835231 for inhibition of SARS-CoV-2.

14.
Am J Respir Crit Care Med ; 203(9): 1099-1111, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166473

RESUMO

Rationale: Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with an increased T-helper cell type 17 (Th17) inflammatory phenotype.Objectives: In this study, we evaluated the microbial and host immune-response dynamics after aspiration with oral commensals using a preclinical mouse model.Methods: Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of killing. The genetic backgrounds of mice included wild-type, MyD88-knockout, and STAT3C backgrounds.Measurements and Main Results: 16S-rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host-transcriptome sequencing was used to characterize the host immune phenotype. Although MOC aspiration correlated with lower-airway dysbiosis that resolved within 5 days, it induced an extended inflammatory response associated with IL-17-producing T cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration before a respiratory challenge with S. pneumoniae led to a decrease in hosts' susceptibility to this pathogen.Conclusions: Thus, in otherwise healthy mice, a single aspiration event with oral commensals is rapidly cleared from the lower airways but induces a prolonged Th17 response that secondarily decreases susceptibility to S. pneumoniae. Translationally, these data implicate an immunoprotective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower-airway pathogens.


Assuntos
Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae , Células Th17/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Infecções Pneumocócicas/etiologia , Prevotella melaninogenica , Streptococcus mitis , Veillonella
15.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33446604

RESUMO

BACKGROUND: Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS: Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. RESULTS: Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS: Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.


Assuntos
Bactérias , Microbiota , Animais , Bactérias/genética , Genômica , Metagenoma , Camundongos , RNA Ribossômico 16S/genética
16.
Ann Rheum Dis ; 80(10): 1339-1344, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34035003

RESUMO

OBJECTIVE: To investigate the humoral and cellular immune response to messenger RNA (mRNA) COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. METHODS: Established patients at New York University Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunisation. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analysed for humoral response. Cellular immune response to SARS-CoV-2 was further analysed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany, were also analysed for humoral immune response. RESULTS: Although healthy subjects (n=208) and patients with IMID on biologic treatments (mostly on tumour necrosis factor blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, patients with IMID on methotrexate do not demonstrate an increase in CD8+ T-cell activation after vaccination. CONCLUSIONS: In two independent cohorts of patients with IMID, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut-offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunisation efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines.

17.
Am J Respir Crit Care Med ; 202(12): 1678-1688, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673495

RESUMO

Rationale: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease.Objectives: As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers.Methods: Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B cells were assessed.Measurements and Main Results: An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in the pathology of index cases.Conclusions: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.


Assuntos
Aerossóis/efeitos adversos , Poluentes Ocupacionais do Ar/efeitos adversos , Instalações Industriais e de Manufatura , Microbiota , Pseudomonas pseudoalcaligenes , Transtornos Respiratórios/fisiopatologia , Adulto , Microbiologia do Ar , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Respiratórios/etiologia , Estados Unidos
18.
Gut ; 69(7): 1269-1282, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31685519

RESUMO

OBJECTIVE: Cancer-associated fibroblasts (CAFs) influence the tumour microenvironment and tumour growth. However, the role of CAFs in colorectal cancer (CRC) development is incompletely understood. DESIGN: We quantified phosphorylation of STAT3 (pSTAT3) expression in CAFs of human colon cancer tissue using a tissue microarray (TMA) of 375 patients, immunofluorescence staining and digital pathology. To investigate the functional role of CAFs in CRC, we took advantage of two murine models of colorectal neoplasia and advanced imaging technologies. In loss-of-function and gain-of-function experiments, using genetically modified mice with collagen type VI (COLVI)-specific signal transducer and activator of transcription 3 (STAT3) targeting, we evaluated STAT3 signalling in fibroblasts during colorectal tumour development. We performed a comparative gene expression profiling by whole genome RNA-sequencing of fibroblast subpopulations (COLVI+ vs COLVI-) on STAT3 activation (IL-6 vs IL-11). RESULTS: The analysis of pSTAT3 expression in CAFs of human TMAs revealed a negative correlation of increased stromal pSTAT3 expression with the survival of colon cancer patients. In the loss-of-function and gain-of-function approach, we found a critical role of STAT3 activation in fibroblasts in driving colorectal tumourigenesis in vivo. With different imaging technologies, we detected an expansion of activated fibroblasts in colorectal neoplasias. Comparative gene expression profiling of fibroblast subpopulations on STAT3 activation revealed the regulation of transcriptional patterns associated with angiogenesis. Finally, the blockade of proangiogenic signalling significantly reduced colorectal tumour growth in mice with constitutive STAT3 activation in COLVI+ fibroblasts. CONCLUSION: Altogether our work demonstrates a critical role of STAT3 activation in CAFs in CRC development.


Assuntos
Neoplasias Colorretais/etiologia , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Colo/metabolismo , Neoplasias Colorretais/diagnóstico , Fibroblastos/metabolismo , Humanos , Camundongos , Fosforilação , Prognóstico , Análise Serial de Tecidos , Transcriptoma
19.
J Immunol ; 201(5): 1442-1451, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012848

RESUMO

Phenotypic differences among substrains of laboratory mice due to spontaneous mutations or pre-existing genetic variation confound the interpretation of targeted mutagenesis experiments and contribute to challenges with reproducibility across institutions. Notably, C57BL/6 Hsd mice and gene-targeted mice that have been backcrossed to this substrain have been reported to harbor a duplication in exons 28 and 29 of Dock2 In this study, we demonstrate the presence of this Dock2 variant in the widely used Nod2-/- mice. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is a cytosolic innate immune receptor associated with inflammatory bowel disease susceptibility. Consistent with a role of NOD2 in an immunological disorder, Nod2-/- mice bred at our institution displayed multiple B cell defects including deficiencies in recirculating B cells, marginal zone B cells, and B1a cells in vivo, as well as defects in class switch recombination in vitro. However, we found that these effects are due to the Dock2 variant and are independent of Nod2 deletion. Despite originating from the same gene-targeted founder mice, Nod2-/- mice from another source did not harbor the Dock2 variant or B cell defects. Finally, we show that Dock2-/- mice display the same B cell defects as mice harboring the Dock2 variant, confirming that the variant is a loss-of-function mutation and is sufficient to explain the alterations to the B cell compartment observed in Nod2-/- mice. Our findings highlight the effects of confounding mutations from widely used inbred strains on gene-targeted mice and reveal new functions of DOCK2 in B cells.


Assuntos
Linfócitos B/imunologia , Proteínas Ativadoras de GTPase , Doenças do Sistema Imunitário , Mutação , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Linfócitos B/patologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/imunologia , Fatores de Troca do Nucleotídeo Guanina , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/patologia , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/imunologia
20.
Proc Natl Acad Sci U S A ; 113(18): 5018-23, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091986

RESUMO

There is ample evidence that somatic cell differentiation during development is accompanied by extensive DNA demethylation of specific sites that vary between cell types. Although the mechanism of this process has not yet been elucidated, it is likely to involve the conversion of 5mC to 5hmC by Tet enzymes. We show that a Tet2/Tet3 conditional knockout at early stages of B-cell development largely prevents lineage-specific programmed demethylation events. This lack of demethylation affects the expression of nearby B-cell lineage genes by impairing enhancer activity, thus causing defects in B-cell differentiation and function. Thus, tissue-specific DNA demethylation appears to be necessary for proper somatic cell development in vivo.


Assuntos
Linfócitos B/citologia , Linfócitos B/fisiologia , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA