Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 47(1): 13-28, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15996545

RESUMO

The Mauthner (M) cell is a critical element in a vital escape "reflex" triggered by abrupt or threatening events. Its properties at the molecular and synaptic levels, their various forms of plasticity, and the design of its networks, are all well adapted for this survival function. They guarantee that this behavior is appropriately unilateral, variable, and unpredictable. The M cell sets the behavioral threshold, and, acting in concert with other elements of the brainstem escape network, determines when, where, and how the escape is executed.


Assuntos
Tomada de Decisões/fisiologia , Neurônios/fisiologia , Animais , Eletrofisiologia , Reação de Fuga/fisiologia , Junções Comunicantes/fisiologia , Humanos , Modelos Neurológicos , Movimento/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
3.
C R Biol ; 326(9): 787-840, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14694754

RESUMO

The search for chaotic patterns has occupied numerous investigators in neuroscience, as in many other fields of science. Their results and main conclusions are reviewed in the light of the most recent criteria that need to be satisfied since the first descriptions of the surrogate strategy. The methods used in each of these studies have almost invariably combined the analysis of experimental data with simulations using formal models, often based on modified Huxley and Hodgkin equations and/or of the Hindmarsh and Rose models of bursting neurons. Due to technical limitations, the results of these simulations have prevailed over experimental ones in studies on the nonlinear properties of large cortical networks and higher brain functions. Yet, and although a convincing proof of chaos (as defined mathematically) has only been obtained at the level of axons, of single and coupled cells, convergent results can be interpreted as compatible with the notion that signals in the brain are distributed according to chaotic patterns at all levels of its various forms of hierarchy. This chronological account of the main landmarks of nonlinear neurosciences follows an earlier publication [Faure, Korn, C. R. Acad. Sci. Paris, Ser. III 324 (2001) 773-793] that was focused on the basic concepts of nonlinear dynamics and methods of investigations which allow chaotic processes to be distinguished from stochastic ones and on the rationale for envisioning their control using external perturbations. Here we present the data and main arguments that support the existence of chaos at all levels from the simplest to the most complex forms of organization of the nervous system. We first provide a short mathematical description of the models of excitable cells and of the different modes of firing of bursting neurons (Section 1). The deterministic behavior reported in giant axons (principally squid), in pacemaker cells, in isolated or in paired neurons of Invertebrates acting as coupled oscillators is then described (Section 2). We also consider chaotic processes exhibited by coupled Vertebrate neurons and of several components of Central Pattern Generators (Section 3). It is then shown that as indicated by studies of synaptic noise, deterministic patterns of firing in presynaptic interneurons are reliably transmitted, to their postsynaptic targets, via probabilistic synapses (Section 4). This raises the more general issue of chaos as a possible neuronal code and of the emerging concept of stochastic resonance Considerations on cortical dynamics and of EEGs are divided in two parts. The first concerns the early attempts by several pioneer authors to demonstrate chaos in experimental material such as the olfactory system or in human recordings during various forms of epilepsies, and the belief in 'dynamical diseases' (Section 5). The second part explores the more recent period during which surrogate-testing, definition of unstable periodic orbits and period-doubling bifurcations have been used to establish more firmly the nonlinear features of retinal and cortical activities and to define predictors of epileptic seizures (Section 6). Finally studies of multidimensional systems have founded radical hypothesis on the role of neuronal attractors in information processing, perception and memory and two elaborate models of the internal states of the brain (i.e. 'winnerless competition' and 'chaotic itinerancy'). Their modifications during cognitive functions are given special attention due to their functional and adaptive capabilities (Section 7) and despite the difficulties that still exist in the practical use of topological profiles in a state space to identify the physical underlying correlates. The reality of 'neurochaos' and its relations with information theory are discussed in the conclusion (Section 8) where are also emphasized the similarities between the theory of chaos and that of dynamical systems. Both theories strongly challenge computationalism and suggest that new models are needed to describe how the external world is represented in the brain.


Assuntos
Encéfalo/fisiologia , Animais , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Humanos , Modelos Animais , Modelos Neurológicos , Dinâmica não Linear
4.
Proc Natl Acad Sci U S A ; 101(8): 2590-5, 2004 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-14983053

RESUMO

Temperature responses of anterior hypothalamic neurons are considered key elements in the regulation of the temperature setpoint of homeotherms. We have investigated the sensitivity to warming of cultured neurons of the AH from mice with electrophysiological and immunocytochemical techniques. In control experiments, only approximately 9% of the 3- to 5-week-old cells exhibited changes of their basic firing rate when the temperature was raised from 37 degrees C to 40 degrees C. This ratio was increased to 27% after the cultures were "primed" by adding prostaglandin E2 (PGE2), an endogenous pyrogen, in the extracellular medium. In these neurons the firing rate was significantly increased, and the frequency of the gamma gamma-aminobutyric acid (GABA) inhibitory postsynaptic potentials was markedly decreased. In contrast, the resting potential and membrane resistance of the recorded cells remained unchanged. PGE2 was found to decrease the level of phosphorylation of the extracellular signal-regulated kinases 1 and 2 in a subset of GABAergic neurons that express the E-prostanoid receptor type 3. Inhibition of ERK1/2 by U0126 mimicked the effects of PGE2. These data indicate that PGE2 acts primarily on the excitability of GABAergic presynaptic cells, most likely via alterations of voltage-gated K+ channels. Our results also suggest that far from being an inherent property of a specialized class of neurons, the degree of thermosensitivity can be strongly modulated by synaptic activity and is a more adaptive property of hypothalamic neurons than previously thought.


Assuntos
Núcleo Hipotalâmico Anterior/fisiologia , Dinoprostona/farmacologia , Neurônios/fisiologia , Aclimatação , Adaptação Fisiológica , Animais , Núcleo Hipotalâmico Anterior/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA