Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 545: 164-170, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33571907

RESUMO

Mammalian Transducin-like enhancer of split (TLE) confer global repression of numerous target genes in conjunction with a myriad of DNA-binding repressors. These factors have a major role in the regulation of multiple signal transduction pathways. Evidence have been obtained regarding the possible role of some of these proteins in cancer. TLE3 was suggested as a marker for increased chemosensitivity from pathological studies. Here we demonstrate, using the TCGA data base, differences in expression of this gene compared to TLE1 in several cancers. In-vitro transduction of a retrovirus encoding TLE3 to A549 lung cancer cells increased paclitaxel effectivity while TLE1 introduction to these cells decreased it. While TLE1 and TLE3 share ∼80% amino acid identity, we show that mutating or reconstituting an amino-terminal phosphorylation site, which is present only in TLE1 but absent from TLE3, and is evolutionary conserved, converts the activity of TLE1 to that of TLE3 like and vice versa. We repeated these results in an adipocytes differentiation system. Our results reveal how a single phosphorylation site can confer distinct qualitative or quantitative activities on highly homologous transcriptional regulators.


Assuntos
Proteínas Correpressoras/química , Proteínas Correpressoras/metabolismo , Células A549 , Adipócitos/citologia , Adipócitos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas Correpressoras/genética , Sequência Conservada , Regulação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Taxoides/farmacologia
2.
Int J Med Microbiol ; 310(1): 151363, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31699441

RESUMO

Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.


Assuntos
Vacinas Bacterianas/genética , Brucella melitensis/genética , Brucella melitensis/patogenicidade , Perfilação da Expressão Gênica , Virulência/genética , Regulação para Baixo , Expressão Gênica , Mutação , Fenótipo , Análise de Sequência de RNA , Regulação para Cima , Vacinas Atenuadas
3.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302421

RESUMO

Brucella species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated B. melitensis Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough Brucella strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain B. melitensis 16M. We identified and characterized eight vital mutations within highly important genes associated with Brucella lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting Brucella morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis.


Assuntos
Vacinas Bacterianas/genética , Brucella melitensis/genética , Genes Bacterianos , Lipopolissacarídeos/biossíntese , Animais , Brucella melitensis/patogenicidade , Lipopolissacarídeos/genética , Mutação , Ovinos/microbiologia , Vacinas Atenuadas/genética , Virulência/genética
4.
Microorganisms ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35208693

RESUMO

Brucellosis, a zoonosis mainly transmitted by consumption of unpasteurized dairy products, is endemic in Southern Israel, mainly among the Bedouin Arab population. However, the genomic epidemiology of B. melitensis in this region has not yet been elucidated. A cohort of brucellosis cases (n = 118) diagnosed between 2017-2019 was studied using whole-genome sequencing (WGS). Phylogenetic analyses utilized core genome MLST (cgMLST) for all local isolates and core genome SNPs for 347 human-associated B. melitensis genomes, including Israeli and publicly available sequences. Israeli isolates formed two main clusters, presenting a notable diversity, with no clear dominance of a specific strain. On a global scale, the Israeli genomes clustered according to their geographical location, in proximity to genomes originating from the Middle East, and formed the largest cluster in the tree, suggesting relatively high conservation. Our study unveils the genomic epidemiology of B. melitensis in Southern Israel, implicating that rather than a common source, the transmission pattern of brucellosis among Bedouin communities is complex, predominantly local, and household-based. Further, genomic surveillance of B. melitensis is expected to inform future public health and veterinary interventions and clinical care.

5.
Front Microbiol ; 12: 712601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745025

RESUMO

Brucella melitensis Rev.1 is a live attenuated vaccine strain that is widely used to control brucellosis in small ruminants. For successful surveillance and control programs, rapid identification and characterization of Brucella isolates and reliable differentiation of vaccinated and naturally infected animals are essential prerequisites. Although MALDI-TOF MS is increasingly applied in clinical microbiology laboratories for the diagnosis of brucellosis, species or even strain differentiation by this method remains a challenge. To detect biomarkers, which enable to distinguish the B. melitensis Rev.1 vaccine strain from B. melitensis field isolates, we initially searched for unique marker proteins by in silico comparison of the B. melitensis Rev.1 and 16M proteomes. We found 113 protein sequences of B. melitensis 16M that revealed a homologous sequence in the B. melitensis Rev.1 annotation and 17 of these sequences yielded potential biomarker pairs. MALDI-TOF MS spectra of 18 B. melitensis Rev.1 vaccine and 183 Israeli B. melitensis field isolates were subsequently analyzed to validate the identified marker candidates. This approach detected two genus-wide unique biomarkers with properties most similar to the ribosomal proteins L24 and S12. These two proteins clearly discriminated B. melitensis Rev.1 from the closely related B. melitensis 16M and the Israeli B. melitensis field isolates. In addition, we verified their discriminatory power using a set of B. melitensis strains from various origins and of different MLVA types. Based on our results, we propose MALDI-TOF MS profiling as a rapid, cost-effective alternative to the traditional, time-consuming approach to differentiate certain B. melitensis isolates on strain level.

6.
Genes (Basel) ; 11(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872264

RESUMO

The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.


Assuntos
Ácidos/toxicidade , Proteínas de Bactérias/metabolismo , Brucella melitensis/patogenicidade , Brucelose/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Brucella melitensis/isolamento & purificação , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Hibridização Genômica Comparativa , Cabras , Células HeLa , Humanos , Estresse Fisiológico , Virulência
7.
Front Microbiol ; 10: 250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837973

RESUMO

The live attenuated Brucella melitensis Rev.1 (Elberg-originated) vaccine strain is widely used to control the zoonotic infection brucellosis in small ruminants, but the molecular mechanisms underlying the attenuation of this strain have not been fully characterized. Following their uptake by the host cell, Brucella replicate inside a membrane-bound compartment-the Brucella-containing vacuole-whose acidification is essential for the survival of the pathogen. Therefore, identifying the genes that contribute to the survival of Brucella in acidic environments will greatly assist our understanding of its molecular pathogenic mechanisms and of the attenuated virulence of the Rev.1 strain. Here, we conducted a comprehensive comparative transcriptome analysis of the Rev.1 vaccine strain against the virulent reference strain 16M in cultures grown under either normal or acidic conditions. We found 403 genes that respond differently to acidic conditions in the two strains (FDR < 0.05, fold change ≥ 2). These genes are involved in crucial cellular processes, including metabolic, biosynthetic, and transport processes. Among the highly enriched genes that were downregulated in Rev.1 under acidic conditions were acetyl-CoA synthetase, aldehyde dehydrogenase, cell division proteins, a cold-shock protein, GroEL, and VirB3. The downregulation of these genes may explain the attenuated virulence of Rev.1 and provide new insights into the virulence mechanisms of Brucella.

8.
Virulence ; 9(1): 1436-1448, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30139304

RESUMO

The live attenuated Brucella melitensis Rev.1 Elberg-originated vaccine strain has been widely used to control brucellosis in small ruminants. However, despite extensive research, the molecular mechanisms underlying the attenuation of this strain are still unknown. In the current study, we conducted a comprehensive comparative analysis of the whole-genome sequence of Rev.1 against that of the virulent reference strain, B. melitensis 16M. This analysis revealed five regions of insertion and three regions of deletion within the Rev.1 genome, among which, one large region of insertion, comprising 3,951 bp, was detected in the Rev.1 genome. In addition, we found several missense mutations within important virulence-related genes, which may be used to determine the mechanism underlying virulence attenuation. Collectively, our findings provide new insights into the Brucella virulence mechanisms and, therefore, may serve as a basis for the rational design of new Brucella vaccines.


Assuntos
Vacinas Bacterianas/genética , Vacina contra Brucelose/genética , Brucella melitensis/genética , Genoma Bacteriano , Mutagênese Insercional , Proteínas de Bactérias/genética , Brucella melitensis/patogenicidade , Brucelose/imunologia , Brucelose/prevenção & controle , Deleção de Genes , Genômica , Mutação de Sentido Incorreto , Vacinas Atenuadas/genética , Virulência/genética
9.
Genome Announc ; 6(12)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567740

RESUMO

Live attenuated vaccines are essential elements in control programs for the prevention of brucellosis. Here, we report the whole-genome sequence of the original Elberg Brucella melitensis Rev.1 vaccine strain, passage 101 (1970). Commercial lines of the original strain have been successfully used in small ruminants worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA