Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(1): 728-740, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917365

RESUMO

There is emerging evidence that amyloid beta protein (Aß) and tau-related lesions in the retina are associated with Alzheimer's disease (AD). Aß and hyperphosphorylated (p)-tau deposits have been described in the retina and were associated with small amyloid spots visualized by in vivo imaging techniques as well as degeneration of the retina. These changes correlate with brain amyloid deposition as determined by histological quantification, positron emission tomography (PET) or clinical diagnosis of AD. However, the literature is not coherent on these histopathological and in vivo imaging findings. One important reason for this is the variability in the methods and the interpretation of findings across different studies. In this perspective, we indicate the critical methodological deviations among different groups and suggest a roadmap moving forward on how to harmonize (i) histopathologic examination of retinal tissue; (ii) in vivo imaging among different methods, devices, and interpretation algorithms; and (iii) inclusion/exclusion criteria for studies aiming at retinal biomarker validation.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Retina/diagnóstico por imagem , Biomarcadores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/patologia
2.
Alzheimers Dement ; 20(2): 1421-1435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897797

RESUMO

This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid ß (Aß) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Transtornos Cerebrovasculares , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Líquido Extracelular , Angiopatia Amiloide Cerebral/terapia , Angiopatia Amiloide Cerebral/patologia , Encéfalo/metabolismo , Transtornos Cerebrovasculares/complicações
3.
Neurobiol Dis ; 187: 106307, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739136

RESUMO

Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aß plaques, immunostaining revealed that both intracellular Aß1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.

4.
Acta Neuropathol ; 145(4): 409-438, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773106

RESUMO

Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid ß-protein (Aß42) forms and novel intraneuronal Aß oligomers (AßOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aß uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aß42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aß pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aß42, far-peripheral AßOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteoma/metabolismo , Proteômica , Retina/patologia , Atrofia/patologia , Biomarcadores/metabolismo
5.
Alzheimers Dement ; 19(11): 5185-5197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37166032

RESUMO

INTRODUCTION: Vascular amyloid beta (Aß) protein deposits were detected in retinas of mild cognitively impaired (MCI) and Alzheimer's disease (AD) patients. We tested the hypothesis that the retinal vascular tight junctions (TJs) were compromised and linked to disease status. METHODS: TJ components and Aß expression in capillaries and larger blood vessels were determined in post mortem retinas from 34 MCI or AD patients and 27 cognitively normal controls and correlated with neuropathology. RESULTS: Severe decreases in retinal vascular zonula occludens-1 (ZO-1) and claudin-5 correlating with abundant arteriolar Aß40 deposition were identified in MCI and AD patients. Retinal claudin-5 deficiency was closely associated with cerebral amyloid angiopathy, whereas ZO-1 defects correlated with cerebral pathology and cognitive deficits. DISCUSSION: We uncovered deficiencies in blood-retinal barrier markers for potential retinal imaging targets of AD screening and monitoring. Intense retinal arteriolar Aß40 deposition suggests a common pathogenic mechanism of failed Aß clearance via intramural periarterial drainage.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Retina , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/patologia , Claudina-5/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Retina/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia
6.
Crit Care ; 26(1): 274, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100846

RESUMO

Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.


Assuntos
Lesão Pulmonar Aguda , Delírio , Lesão Pulmonar Induzida por Ventilação Mecânica , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Delírio/complicações , Modelos Animais de Doenças , Interleucina-6 , Camundongos , Fenótipo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
7.
Alzheimers Dement ; 18(1): 178-190, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058063

RESUMO

The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/epidemiologia , Pesquisa Biomédica , Progressão da Doença , Sintomas Prodrômicos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Austrália/epidemiologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/tratamento farmacológico , Humanos , Estilo de Vida , Tomografia por Emissão de Pósitrons
8.
Harefuah ; 161(8): 523-525, 2022 Aug.
Artigo em Hebraico | MEDLINE | ID: mdl-35979573

RESUMO

INTRODUCTION: Alzheimer's disease is a neurodegenerative disease pathologically characterized by accumulation of abnormal amyloid-beta (Aß) and tau proteins. Research is currently focused on developing treatments to reduce the risk of developing or inhibiting disease progression. Therefore, there is a need to identify diagnostic tools for the initial stages of the disease. The neuropathological processes in Alzheimer's disease exist several decades before symptoms appear and can be identified by PET imaging or CSF analysis. Still, these methods are limited in availability and may be expensive and invasive, and there is therefore a need to develop accessible, inexpensive and non-invasive diagnostic tools. The retina is a component of the central nervous system. Changes in the retina can reflect the cerebral pathological process in Alzheimer's disease. Indeed, evidence of Aß plaques and abnormal tau proteins in the retina of Alzheimer's patients has been reported. The advantage of the retina is its accessibility for direct visualization by existing and non-invasive means. The following review will examine retinal changes that are suggested as possible biomarkers for Alzheimer's disease and discuss directions for future research in the field.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Diagnóstico Precoce , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Retina/diagnóstico por imagem , Retina/metabolismo , Retina/patologia , Proteínas tau/metabolismo
9.
Brain ; 143(1): 336-358, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794021

RESUMO

Targeted overexpression of angiotensin-converting enzyme (ACE), an amyloid-ß protein degrading enzyme, to brain resident microglia and peripheral myelomonocytes (ACE10 model) substantially diminished Alzheimer's-like disease in double-transgenic APPSWE/PS1ΔE9 (AD+) mice. In this study, we explored the impact of selective and transient angiotensin-converting enzyme overexpression on macrophage behaviour and the relative contribution of bone marrow-derived ACE10 macrophages, but not microglia, in attenuating disease progression. To this end, two in vivo approaches were applied in AD+ mice: (i) ACE10/GFP+ bone marrow transplantation with head shielding; and (ii) adoptive transfer of CD115+-ACE10/GFP+ monocytes to the peripheral blood. Extensive in vitro studies were further undertaken to establish the unique ACE10-macrophage phenotype(s) in response to amyloid-ß1-42 fibrils and oligomers. The combined in vivo approaches showed that increased cerebral infiltration of ACE10 as compared to wild-type monocytes (∼3-fold increase; P < 0.05) led to reductions in cerebral soluble amyloid-ß1-42, vascular and parenchymal amyloid-ß deposits, and astrocytosis (31%, 47-80%, and 33%, respectively; P < 0.05-0.0001). ACE10 macrophages surrounded brain and retinal amyloid-ß plaques and expressed 3.2-fold higher insulin-like growth factor-1 (P < 0.01) and ∼60% lower tumour necrosis factor-α (P < 0.05). Importantly, blood enrichment with CD115+-ACE10 monocytes in symptomatic AD+ mice resulted in pronounced synaptic and cognitive preservation (P < 0.05-0.001). In vitro analysis of macrophage response to well-defined amyloid-ß1-42 conformers (fibrils, prion rod-like structures, and stabilized soluble oligomers) revealed extensive resistance to amyloid-ß1-42 species by ACE10 macrophages. They exhibited 2-5-fold increased surface binding to amyloid-ß conformers as well as substantially more effective amyloid-ß1-42 uptake, at least 8-fold higher than those of wild-type macrophages (P < 0.0001), which were associated with enhanced expression of surface scavenger receptors (i.e. CD36, scavenger receptor class A member 1, triggering receptor expressed on myeloid cells 2, CD163; P < 0.05-0.0001), endosomal processing (P < 0.05-0.0001), and ∼80% increased extracellular degradation of amyloid-ß1-42 (P < 0.001). Beneficial ACE10 phenotype was reversed by the angiotensin-converting enzyme inhibitor (lisinopril) and thus was dependent on angiotensin-converting enzyme catalytic activity. Further, ACE10 macrophages presented distinct anti-inflammatory (low inducible nitric oxide synthase and lower tumour necrosis factor-α), pro-healing immune profiles (high insulin-like growth factor-1, elongated cell morphology), even following exposure to Alzheimer's-related amyloid-ß1-42 oligomers. Overall, we provide the first evidence for therapeutic roles of angiotensin-converting enzyme-overexpressing macrophages in preserving synapses and cognition, attenuating neuropathology and neuroinflammation, and enhancing resistance to defined pathognomonic amyloid-ß forms.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Placa Amiloide/metabolismo , Transferência Adotiva , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Técnicas In Vitro , Fator de Crescimento Insulin-Like I/metabolismo , Lisinopril/farmacologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Microglia/patologia , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peptidil Dipeptidase A/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Alzheimers Dement ; 17(1): 103-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090722

RESUMO

In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying biological changes associated with AD, and for tracking progression of disease severity over time. As different retinal imaging modalities provide different types of structural and/or functional information, the discussion reflected on these modalities and their respective strengths and weaknesses. Discussion further focused on the importance of defining the context of use to help guide the development of retinal biomarkers. Moving from research to context of use, and ultimately to clinical evaluation, this article outlines ongoing retinal imaging research today in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Retina/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Encéfalo/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade
11.
Curr Opin Neurol ; 33(1): 87-92, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789703

RESUMO

PURPOSE OF REVIEW: The retina is growingly recognized as a window into cerebrovascular and systemic vascular conditions. The utility of noninvasive retinal vessel biomarkers in cerebrovascular risk assessment has expanded due to advances in retinal imaging techniques and machine learning-based digital analysis. The purpose of this review is to underscore the latest evidence linking retinal vascular abnormalities with stroke and vascular-related cognitive disorders; to highlight modern developments in retinal vascular imaging modalities and software-based vasculopathy quantification. RECENT FINDINGS: Longitudinal studies undertaken for extended periods indicate that retinal vascular changes can predict cerebrovascular disorders (CVD). Cerebrovascular ties to dementia provoked recent explorations of retinal vessel imaging tools for conceivable early cognitive decline detection. Innovative biomedical engineering technologies and advanced dynamic and functional retinal vascular imaging methods have recently been added to the armamentarium, allowing an unbiased and comprehensive analysis of the retinal vasculature. Improved artificial intelligence-based deep learning algorithms have boosted the application of retinal imaging as a clinical and research tool to screen, risk stratify, and monitor with precision CVD and vascular cognitive impairment. SUMMARY: Mounting evidence supports the use of quantitative retinal vessel analysis in predicting CVD, from clinical stroke to neuroimaging markers of stroke and neurodegeneration.


Assuntos
Transtornos Cerebrovasculares/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Demência Vascular/diagnóstico , Vasos Retinianos/diagnóstico por imagem , Inteligência Artificial , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Demência Vascular/diagnóstico por imagem , Humanos , Neuroimagem/métodos
12.
Acta Neuropathol ; 139(5): 813-836, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32043162

RESUMO

Pericyte loss and deficient vascular platelet-derived growth factor receptor-ß (PDGFRß) signaling are prominent features of the blood-brain barrier breakdown described in Alzheimer's disease (AD) that can predict cognitive decline yet have never been studied in the retina. Recent reports using noninvasive retinal amyloid imaging, optical coherence tomography angiography, and histological examinations support the existence of vascular-structural abnormalities and vascular amyloid ß-protein (Aß) deposits in retinas of AD patients. However, the cellular and molecular mechanisms of such retinal vascular pathology were not previously explored. Here, by modifying a method of enzymatically clearing non-vascular retinal tissue and fluorescent immunolabeling of the isolated blood vessel network, we identified substantial pericyte loss together with significant Aß deposition in retinal microvasculature and pericytes in AD. Evaluation of postmortem retinas from a cohort of 56 human donors revealed an early and progressive decrease in vascular PDGFRß in mild cognitive impairment (MCI) and AD compared to cognitively normal controls. Retinal PDGFRß loss significantly associated with increased retinal vascular Aß40 and Aß42 burden. Decreased vascular LRP-1 and early apoptosis of pericytes in AD retina were also detected. Mapping of PDGFRß and Aß40 levels in pre-defined retinal subregions indicated that certain geometrical and cellular layers are more susceptible to AD pathology. Further, correlations were identified between retinal vascular abnormalities and cerebral Aß burden, cerebral amyloid angiopathy (CAA), and clinical status. Overall, the identification of pericyte and PDGFRß loss accompanying increased vascular amyloidosis in Alzheimer's retina implies compromised blood-retinal barrier integrity and provides new targets for AD diagnosis and therapy.


Assuntos
Doença de Alzheimer/patologia , Amiloidose/patologia , Encéfalo/patologia , Pericitos/patologia , Retina/patologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/complicações , Barreira Hematoencefálica/patologia , Angiopatia Amiloide Cerebral/patologia , Cognição/fisiologia , Feminino , Humanos , Masculino
13.
Curr Hypertens Rep ; 22(1): 4, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31916032

RESUMO

PURPOSE OF REVIEW: To review recent studies exploring how myeloid cell overexpression of angiotensin-converting enzyme (ACE) affects the immune response and to formulate an approach for considering the effectiveness of inflammation in cardiovascular disease RECENT FINDINGS: While it is widely appreciated that the renin-angiotensin system affects aspects of inflammation through the action of angiotensin II, new studies reveal a previously unknown role of ACE in myeloid cell biology. This was apparent from analysis of two mouse lines genetically modified to overexpress ACE in monocytes/macrophages or neutrophils. Cells overexpressing ACE demonstrated an increased immune response. For example, mice with increased macrophage ACE expression have increased resistance to melanoma, methicillin-resistant Staphylococcus aureus, a mouse model of Alzheimer's disease, and ApoE-knockout-induced atherosclerosis. These data indicate the profound effect of increasing myeloid cell function. Further, they suggest that an appropriate way to evaluate inflammation in both acute and chronic diseases is to ask whether the inflammatory infiltrate is sufficient to eliminate the immune challenge. The expression of ACE by myeloid cells induces a heightened immune response by these cells. The overexpression of ACE is associated with immune function beyond that possible by wild type (WT) myeloid cells. A heightened immune response effectively resolves disease in a variety of acute and chronic models of disease including models of Alzheimer's disease and atherosclerosis.


Assuntos
Hipertensão , Inflamação , Staphylococcus aureus Resistente à Meticilina , Peptidil Dipeptidase A , Animais , Doença Crônica , Humanos , Camundongos , Células Mieloides , Peptidil Dipeptidase A/metabolismo
14.
Crit Care ; 23(1): 63, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795776

RESUMO

BACKGROUND: Mechanical ventilation is strongly associated with cognitive decline after critical illness. This finding is particularly evident among older individuals who have pre-existing cognitive impairment, most commonly characterized by varying degrees of cerebral amyloid-ß accumulation, neuroinflammation, and blood-brain barrier dysfunction. We sought to test the hypothesis that short-term mechanical ventilation contributes to the neuropathology of cognitive impairment by (i) increasing cerebral amyloid-ß accumulation in mice with pre-existing Alzheimer's disease pathology, (ii) increasing neurologic and systemic inflammation in wild-type mice and mice with pre-existing Alzheimer's disease pathology, and (iii) increasing hippocampal blood-brain barrier permeability in wild-type mice and mice with pre-existing Alzheimer's disease pathology. METHODS: We subjected double transgenic Alzheimer's disease (APP/PSEN1) and wild-type mice to mechanical ventilation for 4 h and compared to non-mechanically ventilated Alzheimer's disease model and wild-type mice. Cerebral soluble/insoluble amyloid-ß1-40/amyloid-ß1-42 and neurological and systemic markers of inflammation were quantified. Hippocampal blood-brain barrier permeability was quantified using a novel methodology that enabled assessment of small and large molecule permeability across the blood-brain barrier. RESULTS: Mechanical ventilation resulted in (i) a significant increase in cerebral soluble amyloid-ß1-40 (p = 0.007) and (ii) significant increases in neuroinflammatory cytokines in both wild-type and Alzheimer's disease mice which, in most cases, were not reflected in the plasma. There were (i) direct correlations between polymorphonuclear cells in the bronchoalveolar fluid and cerebral soluble amyloid-ß1-40 (p = 0.0033), and several Alzheimer's disease-relevant neuroinflammatory biomarkers including cerebral TNF-α and IL-6; (iii) significant decreases in blood-brain barrier permeability in mechanically ventilated Alzheimer's disease mice and a trend towards increased blood-brain barrier permeability in mechanically ventilated wild-type mice. CONCLUSIONS: These results provide the first evidence that short-term mechanical ventilation independently promotes the neuropathology of Alzheimer's disease in subjects with and without pre-existing cerebral Alzheimer's disease pathology. Future studies are needed to further clarify the specific mechanisms by which this occurs and to develop neuroprotective mechanical ventilation strategies that mitigate the risk of cognitive decline after critical illness.


Assuntos
Doença de Alzheimer/terapia , Disfunção Cognitiva/etiologia , Respiração Artificial/normas , Doença de Alzheimer/enzimologia , Análise de Variância , Animais , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Modelos Neurológicos , Respiração Artificial/métodos , Fatores de Tempo
15.
Brain Behav Immun ; 67: 163-180, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28860067

RESUMO

Osteopontin (OPN), a matricellular immunomodulatory cytokine highly expressed by myelomonocytic cells, is known to regulate immune cell migration, communication, and response to brain injury. Enhanced cerebral recruitment of monocytes achieved through glatiramer acetate (GA) immunization or peripheral blood enrichment with bone marrow (BM)-derived CD115+ monocytes (MoBM) curbs amyloid ß-protein (Aß) neuropathology and preserves cognitive function in murine models of Alzheimer's disease (ADtg mice). To elucidate the beneficial mechanisms of these immunomodulatory approaches in AD, we focused on the potential role of OPN in macrophage-mediated Aß clearance. Here, we found extensive OPN upregulation along with reduction of vascular and parenchymal Aß burden in cortices and hippocampi of GA-immunized ADtg mice. Treatment combining GA with blood-grafted MoBM further increased OPN levels surrounding residual Aß plaques. In brains from AD patients and ADtg mice, OPN was also elevated and predominantly expressed by infiltrating GFP+- or Iba1+-CD45high monocyte-derived macrophages engulfing Aß plaques. Following GA immunization, we detected a significant increase in a subpopulation of inflammatory blood monocytes (CD115+CD11b+Ly6Chigh) expressing OPN, and subsequently, an elevated population of OPN-expressing CD11b+Ly6C+CD45high monocyte/macrophages in the brains of these ADtg mice. Correlogram analyses indicate a strong linear correlation between cerebral OPN levels and macrophage infiltration, as well as a tight inverse relation between OPN and Aß-plaque burden. In vitro studies corroborate in vivo findings by showing that GA directly upregulates OPN expression in BM-derived macrophages (MФBM). Further, OPN promotes a phenotypic shift that is highly phagocytic (increased uptake of Aß fibrils and surface scavenger receptors) and anti-inflammatory (altered cell morphology, reduced iNOS, and elevated IL-10 and Aß-degrading enzyme MMP-9). Inhibition of OPN expression in MФBM, either by siRNA, knockout (KOOPN), or minocycline, impairs uptake of Aß fibrils and hinders GA's neuroprotective effects on macrophage immunological profile. Addition of human recombinant OPN reverses the impaired Aß phagocytosis in KOOPN-MФBM. This study demonstrates that OPN has an essential role in modulating macrophage immunological profile and their ability to resist pathogenic forms of Aß.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Osteopontina/metabolismo , Animais , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Encefalite/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Fagocitose , Regulação para Cima
16.
Cell Mol Life Sci ; 74(12): 2167-2201, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28197669

RESUMO

Deficiency in cerebral amyloid ß-protein (Aß) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer's disease (AD). Accumulation of misfolded Aß in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aß is a complex process mediated by various systems and cell types, including vascular transport across the blood-brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aß fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aß pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aß burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aß-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aß clearance with an emphasis on the role of peripheral monocytes and macrophages in Aß removal.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/metabolismo , Monócitos/metabolismo , Doença de Alzheimer/genética , Animais , Humanos , Proteólise
17.
Ann Neurol ; 79(1): 90-109, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26505992

RESUMO

OBJECTIVE: Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer disease (AD). We investigated mRGCs in AD, hypothesizing that they contribute to circadian dysfunction. METHODS: We assessed retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT) in 21 mild-moderate AD patients, and in a subgroup of 16 we evaluated rest-activity circadian rhythm by actigraphy. We studied postmortem mRGCs by immunohistochemistry in retinas, and axons in optic nerve cross-sections of 14 neuropathologically confirmed AD patients. We coimmunostained for retinal amyloid ß (Aß) deposition and melanopsin to locate mRGCs. All AD cohorts were compared with age-matched controls. RESULTS: We demonstrated an age-related optic neuropathy in AD by OCT, with a significant reduction of RNFL thickness (p = 0.038), more evident in the superior quadrant (p = 0.006). Axonal loss was confirmed in postmortem AD optic nerves. Abnormal circadian function characterized only a subgroup of AD patients. Sleep efficiency was significantly reduced in AD patients (p = 0.001). We also found a significant loss of mRGCs in postmortem AD retinal specimens (p = 0.003) across all ages and abnormal mRGC dendritic morphology and size (p = 0.003). In flat-mounted AD retinas, Aß accumulation was remarkably evident inside and around mRGCs. INTERPRETATION: We show variable degrees of rest-activity circadian dysfunction in AD patients. We also demonstrate age-related loss of optic nerve axons and specifically mRGC loss and pathology in postmortem AD retinal specimens, associated with Aß deposition. These results all support the concept that mRGC degeneration is a contributor to circadian rhythm dysfunction in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Axônios/patologia , Transtornos Cronobiológicos , Nervo Óptico/patologia , Células Ganglionares da Retina , Actigrafia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Transtornos Cronobiológicos/etiologia , Transtornos Cronobiológicos/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Opsinas de Bastonetes/metabolismo , Tomografia de Coerência Óptica
18.
Acta Neuropathol ; 132(6): 767-787, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645291

RESUMO

Although historically perceived as a disorder confined to the brain, our understanding of Alzheimer's disease (AD) has expanded to include extra-cerebral manifestation, with mounting evidence of abnormalities in the eye. Among ocular tissues, the retina, a developmental outgrowth of the brain, is marked by an array of pathologies in patients suffering from AD, including nerve fiber layer thinning, degeneration of retinal ganglion cells, and changes to vascular parameters. While the hallmark pathological signs of AD, amyloid ß-protein (Aß) plaques and neurofibrillary tangles (NFT) comprising hyperphosphorylated tau (pTau) protein, have long been described in the brain, identification of these characteristic biomarkers in the retina has only recently been reported. In particular, Aß deposits were discovered in post-mortem retinas of advanced and early stage cases of AD, in stark contrast to non-AD controls. Subsequent studies have reported elevated Aß42/40 peptides, morphologically diverse Aß plaques, and pTau in the retina. In line with the above findings, animal model studies have reported retinal Aß deposits and tauopathy, often correlated with local inflammation, retinal ganglion cell degeneration, and functional deficits. This review highlights the converging evidence that AD manifests in the eye, especially in the retina, which can be imaged directly and non-invasively. Visual dysfunction in AD patients, traditionally attributed to well-documented cerebral pathology, can now be reexamined as a direct outcome of retinal abnormalities. As we continue to study the disease in the brain, the emerging field of ocular AD warrants further investigation of how the retina may faithfully reflect the neurological disease. Indeed, detection of retinal AD pathology, particularly the early presenting amyloid biomarkers, using advanced high-resolution imaging techniques may allow large-scale screening and monitoring of at-risk populations.


Assuntos
Doença de Alzheimer/complicações , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Vias Visuais/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Retina/metabolismo , Retina/patologia , Proteínas tau/metabolismo
19.
Brain ; 138(Pt 8): 2399-422, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26049087

RESUMO

Weekly glatiramer acetate immunization of transgenic mice modelling Alzheimer's disease resulted in retained cognition (Morris water maze test), decreased amyloid-ß plaque burden, and regulation of local inflammation through a mechanism involving enhanced recruitment of monocytes. Ablation of bone marrow-derived myeloid cells exacerbated plaque pathology, whereas weekly administration of glatiramer acetate enhanced cerebral recruitment of innate immune cells, which dampened the pathology. Here, we assessed the therapeutic potential of grafted CD115(+) monocytes, injected once monthly into the peripheral blood of transgenic APPSWE/PS1ΔE9 Alzheimer's disease mouse models, with and without weekly immunization of glatiramer acetate, as compared to glatiramer acetate alone. All immune-modulation treatment groups were compared with age-matched phosphate-buffered saline-injected control transgenic and untreated non-transgenic mouse groups. Two independent cohorts of mice were assessed for behavioural performance (6-8 mice/group); treatments started in 10-month-old symptomatic mice and spanned a total of 2 months. For all three treatments, our data suggest a substantial decrease in cognitive deficit as assessed by the Barnes maze test (P < 0.0001-0.001). Improved cognitive function was associated with synaptic preservation and reduction in cerebral amyloid-ß protein levels and astrogliosis (P < 0.001 and P < 0.0001), with no apparent additive effects for the combined treatment. The peripherally grafted, green fluorescent protein-labelled and endogenous monocytes, homed to cerebral amyloid plaques and directly engulfed amyloid-ß; their recruitment was further enhanced by glatiramer acetate. In glatiramer acetate-immunized mice and, moreover, in the combined treatment group, monocyte recruitment to the brain was coupled with greater elevation of the regulatory cytokine IL10 surrounding amyloid-ß plaques. All treated transgenic mice had increased cerebral levels of MMP9 protein (P < 0.05), an enzyme capable of degrading amyloid-ß, which was highly expressed by the infiltrating monocytes. In vitro studies using primary cultures of bone marrow monocyte-derived macrophages, demonstrated that glatiramer acetate enhanced the ability of macrophages to phagocytose preformed fibrillar amyloid-ß1-42 (P < 0.0001). These glatiramer acetate-treated macrophages exhibited increased expression of the scavenger receptors CD36 and SCARA1 (encoded by MSR1), which can facilitate amyloid-ß phagocytosis, and the amyloid-ß-degrading enzyme MMP9 (P < 0.0001-0.001). Overall, our studies indicate that increased cerebral infiltration of monocytes, either by enrichment of their levels in the circulation or by weekly immunization with glatiramer acetate, resulted in substantial attenuation of disease progression in murine Alzheimer's models by mechanisms that involved enhanced cellular uptake and enzymatic degradation of toxic amyloid-ß as well as regulation of brain inflammation.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Monócitos/citologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Placa Amiloide/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
20.
Biol Chem ; 395(10): 1173-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24633750

RESUMO

Angiotensin-converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis, and several aspects of the immune response. ACE 10/10 mice overexpress ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization toward a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with melanoma, bacterial infection, or Alzheimer disease. As shown in ACE 10/10 mice, enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges.


Assuntos
Células Precursoras de Granulócitos/enzimologia , Células Precursoras de Granulócitos/imunologia , Imunidade Celular/genética , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Animais , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA