Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(20): e106230, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32876341

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS-CoV-2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS-CoV-2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS-CoV-2 and emphasize that brain organoids could model CNS pathologies of COVID-19.


Assuntos
Betacoronavirus/fisiologia , Encéfalo/virologia , Neurônios/virologia , Animais , Morte Celular , Chlorocebus aethiops , Humanos , Doenças do Sistema Nervoso/virologia , Organoides , SARS-CoV-2 , Células Vero , Proteínas tau/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(12): 6741-6751, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152117

RESUMO

Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection of Rag knockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 in Rag knockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.


Assuntos
Proteínas de Homeodomínio/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/complicações , Infecções por Orthomyxoviridae/complicações , Proteostase , Sinucleinopatias/etiologia , alfa-Sinucleína/química , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Influenza Humana/virologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo
3.
Psychiatry Clin Neurosci ; 77(12): 665-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668563

RESUMO

AIM: The disrupted-in-schizophrenia 1 (DISC1) protein is a key regulator at the intersection of major signaling pathways relevant for adaptive behavior. It is prone to posttranslational changes such as misassembly and aggregation but the significance of such transformations for human mental illness has remained unclear. We aimed to demonstrate the occurrence of DISC1 protein aggregates in patients with first-episode psychosis (FEP). METHOD: Cerebrospinal fluid samples of patients with FEP (n = 50) and matched healthy controls (HCs; n = 47) were measured by the highly sensitive surface-based fluorescence intensity distribution analysis technology that enables single aggregate detection. RESULTS: We demonstrate that DISC1 protein aggregates are increased in cerebrospinal fluid samples of patients with FEP versus HCs. The concentration was in the low femtomolar range. No correlations were found with specific symptom levels, but the difference was particularly significant in the subset of patients with the diagnoses schizophrenia, unspecified (DSM-IV 295.9) or schizoaffective disorder (DSM-IV 295.70) at 18-month follow-up. DISC1 protein aggregate levels did not significantly change within the 18-month observation interval and were on average higher for individuals carrying the major DISC1 rs821577 allele, before correction. CONCLUSION: The occurrence of protein aggregates in vivo in patients with psychotic disorders has not been previously reported. It underscores the significance of posttranslational modifications of proteins both as pathogenetic mechanisms and as potential diagnostic markers in these disorders.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Agregados Proteicos , Transtornos Psicóticos/diagnóstico , Esquizofrenia/diagnóstico
4.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232351

RESUMO

The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333-340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as "Tara" or "TAP68") has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Actinas/genética , Actinas/metabolismo , Aminoácidos , Transtorno Depressivo Maior/genética , Humanos , Proteínas dos Microfilamentos/metabolismo , Agregados Proteicos , Isoformas de Proteínas/genética , Esquizofrenia/metabolismo
5.
Neuropathol Appl Neurobiol ; 47(5): 603-610, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33338256

RESUMO

OBJECTIVES: The heterogeneity of Amyloid-beta (Aß) plaque load in patients with Alzheimer's disease (AD) has puzzled neuropathology. Since brain Aß plaque load does not correlate with cognitive decline, neurotoxic soluble Aß oligomers have been championed as disease-causing agents in early AD. So far, investigating molecular interactions between soluble oligomeric Aß and insoluble Aß in vivo has been difficult because of the abundance of Aß oligomer species and the kinetic equilibrium in which they coexist. Here, we investigated whether Aß plaque heterogeneity relates to interactions of different Aß conformers. MATERIALS AND METHODS: We took advantage of transgenic mice that generate exclusively Aß dimers (tgDimer mice) but do not develop Aß plaques or neuroinflammation during their lifetime, crossed them to the transgenic CRND8 mice that develop plaques after 90 days and measured Aß plaque load using immunohistochemical and biochemical assays. Furthermore, we performed in vitro thioflavin T (ThT) aggregation assays titrating synthetic Aß42 -S8C dimers into fibril-forming synthetic Aß42 . RESULTS: We observed a lower number of Aß plaques in the brain of double transgenic mice compared to tgCRND8 mice alone while the average plaque size remained unaltered. Corroborating these in vivo findings, synthetic Aß-S8C dimers inhibited fibril formation of wild-type Aß also in vitro, seen by an increased half-time in the ThT assay. CONCLUSIONS: Our study indicates that Aß dimers directly interfere with Aß fibril formation in vivo and in vitro. The variable interaction of Aß dimers with insoluble Aß seeds could thus contribute to the heterogeneity of Aß plaque load in AD patients.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Disfunção Cognitiva/patologia , Humanos , Camundongos Transgênicos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Fragmentos de Peptídeos/metabolismo
6.
Hum Mol Genet ; 27(20): 3498-3506, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29945223

RESUMO

Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.


Assuntos
Corpo Estriado/metabolismo , Dopamina/biossíntese , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adulto , Corpo Estriado/diagnóstico por imagem , Di-Hidroxifenilalanina/análogos & derivados , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Transtornos Psicóticos/genética , Transtornos Psicóticos/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Adulto Jovem
7.
Mol Psychiatry ; 24(7): 936-951, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089789

RESUMO

Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.


Assuntos
Transtornos Mentais/fisiopatologia , Agregação Patológica de Proteínas/fisiopatologia , Deficiências na Proteostase/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/metabolismo , Modelos Animais de Doenças , Disbindina , Humanos , Saúde Mental , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso
8.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630447

RESUMO

Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer's disease (AD) 2-3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer's disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aß-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aß-induced gene regulatory network, we were able to identify an Aß signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.


Assuntos
Doença de Alzheimer/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Células Mieloides/metabolismo , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Receptores Imunológicos/metabolismo
9.
Behav Brain Sci ; 43: e169, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772976

RESUMO

Tools are generated by defined steps, fulfill distinct uses, and elicit affordances or mental representations. When the latter are recombined, they are perceived as "technical reasoning," resulting in novel tools when executed. They can be exchanged, varied, and selected between individuals in a cumulative social process. Tools are materialized, "petrified" memes forming a duality within the framework of active externalism.


Assuntos
Resolução de Problemas , Humanos
10.
Hippocampus ; 29(9): 802-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723982

RESUMO

Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms.


Assuntos
Sincronização Cortical , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Animais , Comportamento Animal , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Comportamento Exploratório , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Masculino , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Descanso/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Sono/fisiologia
11.
J Biol Chem ; 292(23): 9583-9598, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438837

RESUMO

Aggregation of specific proteins in the brains of patients with chronic mental illness as a result of disruptions in proteostasis is an emerging theme in the study of schizophrenia in particular. Proteins including DISC1 (disrupted in schizophrenia 1) and dysbindin-1B are found in insoluble forms within brain homogenates from such patients. We recently identified TRIOBP-1 (Trio-binding protein 1, also known as Tara) to be another such protein through an epitope discovery and proteomics approach by comparing post-mortem brain material from schizophrenia patients and control individuals. We hypothesized that this was likely to occur as a result of a specific subcellular process and that it, therefore, should be possible to identify a region of the TRIOBP-1 protein that is essential for its aggregation to occur. Here, we probe the domain organization of TRIOBP-1, finding it to possess two distinct coiled-coil domains: the central and C-terminal domains. The central domain inhibits the depolymerization of F-actin and is also responsible for oligomerization of TRIOBP-1. Along with an N-terminal pleckstrin homology domain, the central domain affects neurite outgrowth. In neuroblastoma cells it was found that the aggregation propensity of TRIOBP-1 arises from its central domain, with a short "linker" region narrowed to within amino acids 324-348, between its first two coiled coils, as essential for the formation of TRIOBP-1 aggregates. TRIOBP-1 aggregation, therefore, appears to occur through one or more specific cellular mechanisms, which therefore have the potential to be of physiological relevance for the biological process underlying the development of chronic mental illness.


Assuntos
Actinas , Proteínas dos Microfilamentos , Agregação Patológica de Proteínas , Actinas/química , Actinas/genética , Actinas/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Domínios de Homologia à Plecstrina , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
12.
J Biol Chem ; 292(16): 6468-6477, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28249940

RESUMO

Disrupted in Schizophrenia 1 (DISC1) is a scaffolding protein of significant importance for neurodevelopment and a prominent candidate protein in the pathology of major mental illness. DISC1 modulates a number of critical neuronal signaling pathways through protein-protein interactions; however, the mechanism by which this occurs and how DISC1 causes mental illness is unclear, partly because knowledge of the structure of DISC1 is lacking. A lack of homology with known proteins has hindered attempts to define its domain composition. Here, we employed the high-throughput Expression of Soluble Proteins by Random Incremental Truncation (ESPRIT) technique to identify discretely folded regions of human DISC1 via solubility assessment of tens of thousands of fragments of recombinant DISC1. We identified four novel structured regions, named D, I, S, and C, at amino acids 257-383, 539-655, 635-738, and 691-836, respectively. One region (D) is located in a DISC1 section previously predicted to be unstructured. All regions encompass coiled-coil or α-helical structures, and three are involved in DISC1 oligomerization. Crucially, three of these domains would be lost or disrupted by a chromosomal translocation event after amino acid 597, which has been strongly linked to major mental illness. Furthermore, we observed that a known illness-related frameshift mutation after amino acid 807 causes the C region to form aberrantly multimeric and aggregated complexes with an unstable secondary structure. This newly revealed domain architecture of DISC1, therefore, provides a powerful framework for understanding the critical role of this protein in a variety of devastating mental illnesses.


Assuntos
Mutação , Proteínas do Tecido Nervoso/química , Transtornos Psicóticos/genética , Esquizofrenia/genética , Mutação da Fase de Leitura , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transdução de Sinais
14.
Cereb Cortex ; 27(3): 2052-2063, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965907

RESUMO

Irregular neuronal migration plays a causal role in mental illnesses such as schizophrenia and autism, but the very nature of the migration deficits necessary to evoke adult behavioral changes is unknown. Here, we used in utero electroporation (IUE) in rats to induce a locally restricted, cortical migration deficit by knockdown of disabled-1 (Dab1), an intracellular converging point of the reelin pathway. After birth, selection of successfully electroporated rats by detection of in vivo bioluminescence of a simultaneously electroporated luciferase gene correlated to and was thus predictive to the number of electroporated neurons in postmortem histochemistry at 6 months of age. Rat neurons silenced for Dab1 did not migrate properly and their number surprisingly decreased after E22. Behavioral tests at adult ages (P180) revealed increased sensitivity to amphetamine as well as decreased habituation, but no deficits in memory tasks or motor functions. The data suggest that even subtle migration deficits involving only ten-thousands of cortical neurons during neurodevelopment can lead to lasting behavioral and neuronal changes into adulthood in some very specific behavioral domains. On the other hand, the lack of effects on various memory-related tasks may indicate resilience and plasticity of cognitive functions critical for survival under these specific conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Anfetamina/farmacologia , Animais , Linhagem Celular Tumoral , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Eletroporação , Técnicas de Silenciamento de Genes , Humanos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Neurodesenvolvimento/etiologia , Ratos Sprague-Dawley , Proteína Reelina , Resiliência Psicológica
15.
Int J Mol Sci ; 20(1)2018 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597994

RESUMO

A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1) gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and schizophrenia. Since the discovery of this translocation, many studies have focused on understating the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein could be behind the neurobiology of mental conditions, but not so many studies have focused in the mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying relevant pathways directly affected by DISC1 loss of function. Using an unbiased proteomic approach, we found that the expression of 31 proteins related to neurodevelopment (e.g., CRMP-2, stathmin) and synaptic function (e.g., MUNC-18, NCS-1) is altered by DISC1 in primary mouse neurons. Hence, this study reinforces the idea that DISC1 is a unifying regulator of both neurodevelopment and synaptic function, thereby providing a link between these two key anatomical and cellular circuitries.


Assuntos
Proteínas do Tecido Nervoso/genética , Neurogênese , Transmissão Sináptica , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteoma/genética , Proteoma/metabolismo
16.
J Biol Chem ; 291(2): 613-29, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26553875

RESUMO

The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.


Assuntos
Dendritos/metabolismo , Dinâmica Mitocondrial , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Animais , Axônios/metabolismo , Transporte Biológico , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Tecido Nervoso/química , Ligação Proteica , RNA Longo não Codificante , Proteínas Recombinantes de Fusão/metabolismo , Esquizofrenia/metabolismo , Relação Estrutura-Atividade
17.
Neurobiol Learn Mem ; 146: 12-20, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107702

RESUMO

The Disrupted-in-Schizophrenia 1 (DISC1) gene has been associated with mental illnesses such as major depression and schizophrenia. The transgenic DISC1 (tgDISC1) rat, which overexpresses the human DISC1 gene, is known to exhibit deficient dopamine (DA) homeostasis. To ascertain whether the DISC1 gene also impacts cognitive functions, 14-15 months old male tgDISC1 rats and wild-type controls were subjected to the novel object preference (NOP) test and the object-based attention test (OBAT) in order to assess short-term memory (1 h), long-term memory (24 h), and attention. RESULTS: The tgDISC1 group exhibited intact short-term memory, but deficient long-term-memory in the NOP test and deficient attention-related behavior in the OBAT. In a different group of tgDISC1 rats, 3 mg/kg intranasally applied dopamine (IN-DA) or its vehicle was applied prior to the NOP or the OBAT test. IN-DA reversed cognitive deficits in both the NOP and OBAT tests. In a further cohort of tgDISC1 rats, post-mortem levels of DA, noradrenaline, serotonin and acetylcholine were determined in a variety of brain regions. The tgDISC1 group had less DA in the neostriatum, hippocampus and amygdala, less acetylcholine in neostriatum, nucleus accumbens, hippocampus, and amygdala, more serotonin in the nucleus accumbens, and less serotonin and noradrenaline in the amygdala. CONCLUSIONS: Our findings show that DISC1 overexpression and misassembly is associated with deficits in long-term memory and attention-related behavior. Since behavioral impairments in tgDISC1 rats were reversed by IN-DA, DA deficiency may be a major cause for the behavioral deficits expressed in this model.


Assuntos
Atenção , Comportamento Animal , Disfunção Cognitiva , Dopamina/deficiência , Dopamina/farmacologia , Memória de Longo Prazo , Memória de Curto Prazo , Proteínas do Tecido Nervoso/metabolismo , Administração Intranasal , Animais , Atenção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Dopamina/administração & dosagem , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
18.
Brain ; 139(Pt 2): 509-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657517

RESUMO

Despite amyloid plaques, consisting of insoluble, aggregated amyloid-ß peptides, being a defining feature of Alzheimer's disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer's disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-ß oligomers, consisting of multiple amyloid-ß monomers, as precursors of insoluble amyloid-ß plaques. Dissecting the biological effects of single amyloid-ß oligomers, for example of amyloid-ß dimers, an abundant amyloid-ß oligomer associated with clinical progression of Alzheimer's disease, has been difficult due to the inability to control the kinetics of amyloid-ß multimerization. For investigating the biological effects of amyloid-ß dimers, we stabilized amyloid-ß dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-ß peptide (Aß-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-ß dimers, but not monomers, amyloid-ß plaques or insoluble amyloid-ß during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer's disease mouse models. Although the amyloid-ß dimers were unable to initiate the formation of insoluble amyloid-ß aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-ß plaque generating mouse model, Aß-S8C dimers were sequestered into amyloid-ß plaques, suggesting that amyloid-ß plaques incorporate neurotoxic amyloid-ß dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-ß species, amyloid-ß dimer neurotoxic signalling, in the absence of amyloid-ß plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/metabolismo , Plasticidade Neuronal/fisiologia , Placa Amiloide/metabolismo , Multimerização Proteica/fisiologia , Peptídeos beta-Amiloides/genética , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Placa Amiloide/genética , Placa Amiloide/patologia
19.
Hum Mol Genet ; 23(22): 5859-65, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24934694

RESUMO

In a large Scottish pedigree, disruption of the gene coding for DISC1 clearly segregates with major depression, schizophrenia and related mental conditions. Thus, study of DISC1 may provide a clue to understand the biology of major mental illness. A neuropeptide precursor VGF has potent antidepressant effects and has been reportedly associated with bipolar disorder. Here we show that DISC1 knockdown leads to a reduction of VGF, in neurons. VGF is also downregulated in the cortices from sporadic cases with major mental disease. A positive correlation of VGF single-nucleotide polymorphisms (SNPs) with social anhedonia was also observed. We now propose that VGF participates in a common pathophysiology of major mental disease.


Assuntos
Encéfalo/metabolismo , Regulação para Baixo , Transtornos Mentais/genética , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Anedonia , Estudos de Coortes , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único
20.
J Neurochem ; 135(3): 598-605, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26212236

RESUMO

Disrupted in schizophrenia (DISC1) is a risk factor for chronic mental disease. In a previous proteomic study, we reported that knocking down DISC1 results in a sharp decrease in the levels of the neuropeptide precursor VGF (non-acronymic) and leads to reduced activation of cAMP response element-binding protein (CREB) and protein kinase B (AKT) in neurons. The main objective of this study is to complete the characterization of the route, or routes, involving AKT and CREB through which DISC1 modulates the expression of VGF. For that we explored known players upstream of AKT and the DISC1 binding partners glycogen synthase kinase-3 beta and Phosphodiesterase-4, which might in turn reach out to CREB in murine neuron primary culture. We found that DISC1 modulates the activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, pharmacological inhibition of PI3K resulted in decreased expression of VGF. All this suggests that the PI3K/AKT pathway plays a role in mediating the effects of DISC1 silencing on VGF expression. Given the important roles of VGF in mental disease, and its drugability, the DISC1-VGF connection might prove to be important for efforts to develop new therapies for these diseases.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeos/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Fatores de Crescimento Neural/biossíntese , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA