Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 359(2): 262-76, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925490

RESUMO

Developmental patterning and growth of the vertebrate digestive and respiratory tracts requires interactions between the epithelial endoderm and adjacent mesoderm. The esophagus is a specialized structure that connects the digestive and respiratory systems and its normal development is critical for both. Shh signaling from the epithelium regulates related aspects of mammalian and zebrafish digestive organ development and has a prominent effect on esophageal morphogenesis. The mechanisms underlying esophageal malformations, however, are poorly understood. Here, we show that zebrafish Ihha signaling from the epithelium acting in parallel, but independently of Shh, controls epithelial and mesenchymal cell proliferation and differentiation of smooth muscles and neurons in the gut and swimbladder. In zebrafish ihha mutants, the esophageal and swimbladder epithelium is dysmorphic, and expression of fgf10 in adjacent mesenchymal cells is affected. Analysis of the development of the esophagus and swimbladder in fgf10 mutant daedalus (dae) and compound dae/ihha mutants shows that the Ihha-Fgf10 regulatory interaction is realized through a signaling feedback loop between the Ihha-expressing epithelium and Fgf10-expressing mesenchyme. Disruption of this loop further affects the esophageal and swimbladder epithelium in ihha mutants, and Ihha acts in parallel to but independently of Shha in this process. These findings contribute to the understanding of epithelial-mesenchymal interactions and highlight an interaction between Hh and Fgf signaling pathways during esophagus and swimbladder development.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sacos Aéreos/embriologia , Sacos Aéreos/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Esôfago/embriologia , Esôfago/metabolismo , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Trato Gastrointestinal/citologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/genética , Hibridização In Situ , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Microscopia Confocal , Mutação , Receptores Patched , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Gene Expr Patterns ; 41: 119185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087472

RESUMO

The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Receptor Smoothened/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Proteínas Hedgehog/genética , Pâncreas , Receptor Smoothened/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Oncogene ; 23(32): 5562-6, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15184871

RESUMO

Epstein-Barr virus-immortalized lymphoblastoid cell lines were derived from five patients with late radionecrosis. Two of these cell lines exhibited postradiation viability levels intermediate between normal cell lines and that from an individual with ataxia telangiectasia. Compared with controls, these two cell lines exhibited impaired ability to rejoin DNA double-strand breaks on pulsed-field gel electrophoresis and 6-10-fold reduced DNA-dependent protein kinase (DNA-PK) activity in vitro in cell-free extracts. Immunoblotting showed normal levels of Ku70, Ku80 and XRCC4 and the presence of DNA-PKcs in both cell lines. These findings suggest that DNA-PK might be an important factor affecting the predisposition of radiotherapy patients to late radionecrosis.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA , DNA/metabolismo , Neoplasias/radioterapia , Proteínas Serina-Treonina Quinases/metabolismo , DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteína Quinase Ativada por DNA , Relação Dose-Resposta à Radiação , Humanos , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/efeitos da radiação
4.
PLoS One ; 6(3): e18431, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21479192

RESUMO

BACKGROUND: Wnt signaling plays critical roles in mammalian lung development. However, Wnt signaling in the development of the zebrafish swimbladder, which is considered as a counterpart of mammalian lungs, have not been explored. To investigate the potential conservation of signaling events in early development of the lung and swimbladder, we wish to address the question whether Wnt signaling plays a role in swimbladder development. METHODOLOGY/PRINCIPAL FINDINGS: For analysis of zebrafish swimbladder development, we first identified, by whole-mount in situ hybridization (WISH), has2 as a mesenchymal marker, sox2 as the earliest epithelial marker, as well as hprt1l and elovl1a as the earliest mesothelial markers. We also demonstrated that genes encoding Wnt signaling members Wnt5b, Fz2, Fz7b, Lef1, Tcf3 were expressed in different layers of swimbladder. Then we utilized the heat-shock inducible transgenic lines hs:Dkk1-GFP and hs:ΔTcf-GFP to temporarily block canonical Wnt signaling. Inhibition of canonical Wnt signaling at various time points disturbed precursor cells specification, organization, anterioposterior patterning, and smooth muscle differentiation in all three tissue layers of swimbladder. These observations were also confirmed by using a chemical inhibitor (IWR-1) of Wnt signaling. In addition, we found that Hedgehog (Hh) signaling was activated by canonical Wnt signaling and imposed a negative feedback on the latter. SIGNIFICANCE/CONCLUSION: We first provided a new set of gene markers for the three tissue layers of swimbladder in zebrafish and demonstrated the expression of several key genes of Wnt signaling pathway in developing swimbladder. Our functional analysis data indicated that Wnt/ß-catenin signaling is required for swimbladder early development and we also provided evidence for the crosstalk between Wnt and Hh signaling in early swimbladder development.


Assuntos
Sacos Aéreos/embriologia , Sacos Aéreos/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sacos Aéreos/citologia , Animais , Animais Geneticamente Modificados , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células , Embrião não Mamífero/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Marcadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Hedgehog/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Morfogênese/genética , Miócitos de Músculo Liso/citologia , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Proteínas Wnt/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Gene Expr Patterns ; 10(7-8): 338-44, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20682360

RESUMO

Although Wnt and Hedgehog (Hh) signaling pathways play important roles in mouse lung development, these have not been explored in the development of Xenopus lung. This may be due to the lack of specific molecular markers for different layers of tissue in Xenopus lung and/or insufficient knowledge on expression patterns of Wnt and Hh signaling components in Xenopus lung. In this study, we first described the early morphogenesis of Xenopus laevis lung by using surfactant protein C (sftpc) as a marker of lung epithelium and compared it with the expression patterns of several genes of Wnt and Hh pathways in Xenopus lungs. Our data showed that wnt7b was expressed in the entire lung epithelium from stage 37 to stage 45, while two other Wnt signaling components, wnt5a and wif1 (wnt inhibitory factor 1), were expressed in the mesenchyme layer of the entire lungs through stages 39-41. We also found that sonic hedgehog (shh) was expressed at stage 41 only in the anterior, but not in the posterior part of the lungs. These results show the expression of wnt5a, wnt7b, wif1 and shh in different layers of tissue of Xenopus lungs at early developmental stages, which implies different roles of these genes in the early development of Xenopus lungs. Our study for the first time defined specific molecular markers for description of early lung development in Xenopus, as well as provided information about expression of components of Wnt and Hh pathways in early Xenopus lungs, which should be useful for future functional studies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Pulmão/embriologia , Proteínas Wnt/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Epitélio/embriologia , Marcadores Genéticos , Proteínas Hedgehog/metabolismo , Hibridização In Situ , Pulmão/citologia , Pulmão/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese/genética , Reação em Cadeia da Polimerase , Surfactantes Pulmonares , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
6.
Exp Cell Res ; 312(9): 1526-39, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16490192

RESUMO

In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficient in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development.


Assuntos
Proteínas de Fluorescência Verde/genética , Pâncreas Exócrino/metabolismo , Elastase Pancreática/genética , Regiões Promotoras Genéticas/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Toxina Diftérica/genética , Proteínas de Ligação a Ácido Graxo/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Oligonucleotídeos Antissenso/genética , Pâncreas Exócrino/embriologia , Pâncreas Exócrino/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência de Aminoácidos , Receptor Smoothened , Somatostatina/genética , Fatores de Transcrição , Transferrina/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA