Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Nat Immunol ; 21(8): 950-961, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572241

RESUMO

A contribution of epigenetic modifications to B cell tolerance has been proposed but not directly tested. Here we report that deficiency of ten-eleven translocation (Tet) DNA demethylase family members Tet2 and Tet3 in B cells led to hyperactivation of B and T cells, autoantibody production and lupus-like disease in mice. Mechanistically, in the absence of Tet2 and Tet3, downregulation of CD86, which normally occurs following chronic exposure of self-reactive B cells to self-antigen, did not take place. The importance of dysregulated CD86 expression in Tet2- and Tet3-deficient B cells was further demonstrated by the restriction, albeit not complete, on aberrant T and B cell activation following anti-CD86 blockade. Tet2- and Tet3-deficient B cells had decreased accumulation of histone deacetylase 1 (HDAC1) and HDAC2 at the Cd86 locus. Thus, our findings suggest that Tet2- and Tet3-mediated chromatin modification participates in repression of CD86 on chronically stimulated self-reactive B cells, which contributes, at least in part, to preventing autoimmunity.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Antígeno B7-2/imunologia , Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Animais , Doenças Autoimunes/imunologia , Epigênese Genética/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Cell ; 157(6): 1445-1459, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24856970

RESUMO

Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas F-Box/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Desenvolvimento Ósseo , Ilhas de CpG , Proteínas F-Box/química , Proteínas F-Box/genética , Genes Letais , Estudo de Associação Genômica Ampla , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Estrutura Terciária de Proteína
4.
Mol Cell ; 81(10): 2166-2182.e6, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33765415

RESUMO

The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.


Assuntos
Elementos Facilitadores Genéticos , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Biocatálise , Cromatina/metabolismo , Regulação para Baixo/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo
5.
Genes Dev ; 35(5-6): 354-366, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602871

RESUMO

Polycomb repressive complex 1 (PRC1) and PRC2 are critical epigenetic developmental regulators. PRC1 and PRC2 largely overlap in their genomic binding and cooperate to establish repressive chromatin domains demarcated by H2AK119ub and H3K27me3. However, the functional contribution of each complex to gene repression has been a subject of debate, and understanding of its physiological significance requires further studies. Here, using the developing murine epidermis as a paradigm, we uncovered a previously unappreciated functional redundancy between Polycomb complexes. Coablation of PRC1 and PRC2 in embryonic epidermal progenitors resulted in severe defects in epidermal stratification, a phenotype not observed in the single PRC1-null or PRC2-null epidermis. Molecular dissection indicated a loss of epidermal identity that was coupled to a strong derepression of nonlineage transcription factors, otherwise repressed by either PRC1 or PRC2 in the absence of its counterpart. Ectopic expression of subsets of PRC1/2-repressed nonepidermal transcription factors in wild-type epidermal stem cells was sufficient to suppress epidermal identity genes, highlighting the importance of functional redundancy between PRC1 and PRC2. Altogether, our studies show how PRC1 and PRC2 function as two independent counterparts, thereby providing a repressive safety net that protects and preserves lineage identity.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células Epidérmicas/citologia , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Células Epidérmicas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Cell ; 74(5): 1020-1036.e8, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31029541

RESUMO

The Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells. We demonstrate that canonical Polycomb repressive complex 1 (PRC1), which mediates higher-order chromatin structures, contributes little to gene repression. Instead, we uncover an unexpectedly high degree of synergy between variant PRC1 complexes, which is fundamental to gene repression. We further demonstrate that variant PRC1 complexes are responsible for distinct pools of H2A monoubiquitylation that are associated with repression of Polycomb target genes and silencing during X chromosome inactivation. Together, these discoveries reveal a new variant PRC1-dependent logic for Polycomb-mediated gene repression.


Assuntos
Cromatina/genética , Genômica , Complexo Repressor Polycomb 1/genética , Inativação do Cromossomo X/genética , Animais , Histonas/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Interferência de RNA , Ubiquitinação/genética
7.
Mol Cell ; 76(3): 437-452.e6, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31521505

RESUMO

Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Metilação , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Genes Dev ; 33(1-2): 55-60, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567998

RESUMO

Polycomb-repressive complex 1 (PRC1) and PRC2 are critical chromatin regulators of gene expression and tissue development. Here, we show that despite extensive genomic cobinding, PRC1 is essential for epidermal integrity, whereas PRC2 is dispensable. Loss of PRC1 resulted in blistering skin, reminiscent of human skin fragility syndromes. Conversely, PRC1 does not restrict epidermal stratification during skin morphogenesis, whereas PRC2 does. Molecular dissection demonstrated that PRC1 functions with PRC2 to silence/dampen expression of adhesion genes. In contrast, PRC1 promotes expression of critical epidermal adhesion genes independently of PRC2-mediated H3K27me3. Together, we demonstrate a functional link between epigenetic regulation and skin diseases.


Assuntos
Células Epidérmicas/fisiologia , Epiderme/fisiologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Dermatopatias/genética , Animais , Adesão Celular/genética , Epiderme/crescimento & desenvolvimento , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 1/genética , Dermatopatias/fisiopatologia
9.
Nat Immunol ; 15(6): 571-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24777532

RESUMO

Intestinal regulatory T cells (Treg cells) are necessary for the suppression of excessive immune responses to commensal bacteria. However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in Treg cells. Mice with T cell-specific deficiency in Uhrf1 (Uhrf1(fl/fl)Cd4-Cre mice) showed defective proliferation and functional maturation of colonic Treg cells. Uhrf1 deficiency resulted in derepression of the gene (Cdkn1a) that encodes the cyclin-dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Treg cells. As a consequence, Uhrf1(fl/fl)Cd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing of Cdkn1a was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic host-microbe interactions without an inflammatory response.


Assuntos
Colite/imunologia , Colo/imunologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética , Proteínas Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Células Cultivadas , Clostridium/imunologia , Colite/genética , Colo/microbiologia , Metilação de DNA , Perfilação da Expressão Gênica , Interleucina-2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota/imunologia , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Simbiose/imunologia , Ubiquitina-Proteína Ligases , Regulação para Cima
10.
Mol Cell ; 70(3): 408-421.e8, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628311

RESUMO

The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.


Assuntos
Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Histonas/genética , Humanos , Metilação , Metiltransferases/genética , Camundongos , Neoplasias/genética , Alinhamento de Sequência
11.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015852

RESUMO

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Assuntos
Hipersensibilidade , Células Th2 , Humanos , Animais , Camundongos , Granzimas/genética , Granzimas/metabolismo , Interleucina-5/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
12.
FASEB J ; 38(1): e23339, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069905

RESUMO

Being overweight exacerbates various metabolic diseases, necessitating the identification of target molecules for obesity control. In the current study, we investigated common physiological features related to metabolism in mice with low weight gain: (1) G protein-coupled receptor, family C, group 5, member B-knockout; (2) gastric inhibitory polypeptide receptor-knockout; and (3) Iroquois-related homeobox 3-knockout. Moreover, we explored genes involved in metabolism by analyzing differentially expressed genes (DEGs) between low-weight gain mice and the respective wild-type control mice. The common characteristics of the low-weight gain mice were low inguinal white adipose tissue (iWAT) and liver weight despite similar food intake along with lower blood leptin levels and high energy expenditure. The DEGs of iWAT, epididymal (gonadal) WAT, brown adipose tissue, muscle, liver, hypothalamus, and hippocampus common to these low-weight gain mice were designated as candidate genes associated with metabolism. One such gene tetraspanin 7 (Tspan7) from the iWAT was validated using knockout and overexpressing mouse models. Mice with low Tspan7 expression gained more weight, while those with high Tspan7 expression gained less weight, confirming the involvement of the Tspan7 gene in weight regulation. Collectively, these findings suggest that the candidate gene list generated in this study contains potential target molecules for obesity regulation. Further validation and additional data from low-weight gain mice will aid in understanding the molecular mechanisms associated with obesity.


Assuntos
Tecido Adiposo Marrom , Obesidade , Camundongos , Animais , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Aumento de Peso/genética , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/genética , Fenótipo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica , Camundongos Knockout
13.
Mol Cell ; 65(5): 873-884.e8, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257702

RESUMO

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.


Assuntos
Núcleo Celular/metabolismo , Reprogramação Celular , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Técnicas de Transferência Nuclear , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Linhagem Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , Clonagem Molecular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Oócitos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Xenopus laevis
14.
Genes Dev ; 31(16): 1693-1703, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28924034

RESUMO

During spermatogenesis, a large number of germline genes essential for male fertility are coordinately activated. However, it remains unknown how timely activation of this group of germline genes is accomplished. Here we show that Polycomb-repressive complex 1 (PRC1) directs timely activation of germline genes during spermatogenesis. Inactivation of PRC1 in male germ cells results in the gradual loss of a stem cell population and severe differentiation defects, leading to male infertility. In the stem cell population, RNF2, the dominant catalytic subunit of PRC1, activates transcription of Sall4, which codes for a transcription factor essential for subsequent spermatogenic differentiation. Furthermore, RNF2 and SALL4 together occupy transcription start sites of germline genes in the stem cell population. Once differentiation commences, these germline genes are activated to enable the progression of spermatogenesis. Our study identifies a novel mechanism by which Polycomb directs the developmental process by activating a group of lineage-specific genes.


Assuntos
Complexo Repressor Polycomb 1/fisiologia , Espermatogênese/genética , Ativação Transcricional , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Masculino , Camundongos , Camundongos Transgênicos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33998651

RESUMO

Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood. Here, we reveal that NP95 (also known as UHRF1) and DNMT1 - two essential proteins for maintenance DNA methylation - are co-expressed in spermatogonia and are necessary for meiosis in male germ cells. We find that Np95- or Dnmt1-deficient spermatocytes exhibit spermatogenic defects characterized by synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in both mutants. Based on these observations, we propose that DNA methylation, established in pre-meiotic spermatogonia, regulates synapsis of homologous chromosomes and, in turn, quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role in ensuring faithful transmission of both genetic and epigenetic information to offspring.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Pareamento Cromossômico/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Espermatócitos/crescimento & desenvolvimento , Espermatogênese/genética , Ubiquitina-Proteína Ligases/genética , Células-Tronco Germinativas Adultas/citologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigênese Genética/genética , Heterocromatina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espermatócitos/fisiologia , Espermatogênese/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
16.
Genes Cells ; 28(7): 482-495, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37073980

RESUMO

Histone methylation plays a vital role in retinal development. However, the role of histone H3K36 methylation in retinal development is not clear. We examined the role of H3K36 methylation by loss-of-function analysis of H3K36me1/2 demethylases, Fbxl10, and Fbxl11. We analyzed the effect of knockout of these genes in the developing and mature retina on retinal development. Knockout of Fbxl10 specifically in the developing retina did not result in gross developmental abnormalities. Although adult rod photoreceptor-specific knockout of Fbxl11 in mature retinas did not result in morphological abnormalities, Fbxl11 knockout in developing retinas increased apoptosis, suppressed the proliferation of retinal progenitor cells, and resulted in microphthalmia. Morphological analysis revealed perturbed differentiation of rod photoreceptor and bipolar cells. RNA-seq of retinas at P7 showed markedly decreased expression of genes characterizing rod photoreceptor and bipolar cells in Fbxl11-knockout retinas. In addition, perturbation of alternative splicing increased intron retention in Fbxl11-knockout retinas. Genome-wide evaluation of the H3K36 methylation status revealed that Fbxl11 knockout altered the distribution of H3K36me2/3 in genes important for rod photoreceptor development. Taken together, we show that Fbxl11 plays pivotal roles in the development of retinal late-born cell types and may contribute to tight control of H3K36 methylation during retinal development.


Assuntos
Histona Desmetilases , Histonas , Diferenciação Celular/genética , Histona Desmetilases/genética , Histonas/genética , Histonas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes , Animais , Camundongos
17.
Biochem Soc Trans ; 52(1): 151-161, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288743

RESUMO

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.


Assuntos
Estudo de Associação Genômica Ampla , Código das Histonas , Animais , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Histonas/metabolismo , Cromatina , Complexo Repressor Polycomb 2/genética , Ubiquitina-Proteína Ligases/metabolismo , Mamíferos/metabolismo
18.
Exp Dermatol ; 33(10): e70000, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39422315

RESUMO

The epidermis, the most superficial layer of the human skin, serves a critical barrier function, protecting the body from external pathogens and allergens. Dysregulation of epidermal differentiation contributes to barrier dysfunction and has been implicated in the pathology of various dermatological diseases, including atopic dermatitis (AD). Mucopolysaccharide polysulphate (MPS) is a moisturising agent used to treat xerosis in patients with AD. However, its mechanism of action on keratinocytes, the main constituents of the epidermis, remains unclear. In this study, we investigated the effect of MPS on keratinocytes by subjecting adult human epidermal and three-dimensional cultured keratinocytes to MPS treatment, followed by transcriptome analysis. The analysis revealed that MPS treatment enhances keratinocyte differentiation and suppresses proliferation. We focused on amphiregulin (AREG), a membrane protein that belongs to the epidermal growth factor (EGF) family and possesses a heparin-binding domain, as a significant target among the genes altered by MPS. MPS exerted an inhibitory effect directly on AREG, rather than on EGF receptors or other members of the EGF family. Furthermore, AREG leads to a reduction in epidermal barrier function, whereas MPS contributes to barrier enhancement via AREG inhibition. Collectively, these findings suggest that MPS modulates barrier function through AREG inhibition, offering insights into potential therapeutic strategies for skin barrier restoration.


Assuntos
Anfirregulina , Diferenciação Celular , Epiderme , Queratinócitos , Anfirregulina/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores
19.
EMBO Rep ; 23(3): e53302, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037711

RESUMO

Decline in immune function during aging increases susceptibility to different aging-related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here, we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson's disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.


Assuntos
Estresse Oxidativo , Doença de Parkinson , Envelhecimento/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Estresse Oxidativo/genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Linfócitos T
20.
J Immunol ; 208(3): 582-593, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34996836

RESUMO

Pemphigus vulgaris is an autoimmune blistering disease caused by IgG targeting desmoglein 3 (Dsg3), an adhesion molecule of keratinocytes. Anti-Dsg3 IgG production is prevented in healthy individuals, but it is unclear how Dsg3-specific B cells are regulated. To clarify the immunological condition regulating Dsg3-specific B cells, a pathogenic anti-Dsg3 Ig (AK23) knock-in mouse was generated. AK23 knock-in B cells developed normally without undergoing deletion or acquiring an anergic phenotype in vivo. The knock-in B cells showed Ca2+ influx upon IgM cross-linking and differentiated into AK23-IgG+ B cells after LPS and IL-4 stimulation in vitro that induced a pemphigus phenotype after adoptive transfer into Rag2 -/- mice. However, the knock-in mouse itself produced AK23-IgM but little IgG without blisters in vivo. Dsg3 immunization and skin inflammation caused AK23-IgG production and a pemphigus phenotype in vivo. Furthermore, Fcgr2b deficiency or haploinsufficiency spontaneously induced AK23-IgG production and a pemphigus phenotype with poor survival rates in AK23 knock-in mice. To assess Fcgr2b involvement in Ig class-switch efficiency, postswitch transcripts of B cells were quantified and significantly higher in Fcgr2b -/- and Fcgr2b +/- mice than wild-type mice in a gene dose-dependent manner. Finally, RNA sequencing revealed reduced expression of FCGR2B and FcγRIIB-related genes in patient B cells. These results indicated that Dsg3-specific B cells do not spontaneously perform pathogenic class switching in vivo, and pemphigus phenotype induction was prevented under normal conditions. Attenuated FcγRIIB signaling is also one of the drivers for pathogenic class switching and is consistent with immunological features identified from clinical samples. This study unveiled a characteristic immune state silencing autoreactive B cells in mice.


Assuntos
Desmogleína 3/genética , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Pênfigo/genética , Receptores de IgG/genética , Adulto , Idoso , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Desmogleína 3/imunologia , Feminino , Técnicas de Introdução de Genes , Humanos , Imunoglobulina G/genética , Imunoglobulina M/genética , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Pênfigo/imunologia , Pênfigo/patologia , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA