Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Genes Dev ; 34(11-12): 819-831, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354834

RESUMO

Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
2.
Yeast ; 30(12): 501-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185677

RESUMO

Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Saccharomyces cerevisiae/citologia , Sensibilidade e Especificidade , Fatores de Tempo
3.
Nucleic Acids Res ; 37(18): 6126-34, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692582

RESUMO

Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.


Assuntos
Acetiltransferases/química , Cromátides/enzimologia , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Dedos de Zinco , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Dano ao DNA , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerização Proteica , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Biol ; 163(5): 937-47, 2003 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-14662740

RESUMO

Condensin is an evolutionarily conserved protein complex that helps mediate chromosome condensation and segregation in mitotic cells. Here, we show that condensin has two activities that contribute to meiotic chromosome condensation in Saccharomyces cerevisiae. One activity, common to mitosis, helps mediate axial length compaction. A second activity promotes chromosome individualization with the help of Red1 and Hop1, two meiotic specific components of axial elements. Like Red1 and Hop1, condensin is also required for efficient homologue pairing and proper processing of double strand breaks. Consistent with these functional links condensin is necessary for proper chromosomal localization of Red1 and Hop1 and the subsequent assembly of the synaptonemal complex. Finally, condensin has a Red1/Hop1-independent role in the resolution of recombination-dependent linkages between homologues in meiosis I. The existence of distinct meiotic activities of condensin (axial compaction, individualization, and resolution of recombination-dependent links) provides an important framework to understand condensin's role in both meiotic and mitotic chromosome structure and function.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/fisiologia , Recombinação Genética , Saccharomyces cerevisiae/genética , Complexo Sinaptonêmico/metabolismo , Núcleo Celular/metabolismo , DNA Fúngico/metabolismo , Complexos Multiproteicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos
5.
Elife ; 82019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31162048

RESUMO

Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/química , Complexos Multiproteicos/química , Mutação/genética , Domínios Proteicos , Subunidades Proteicas/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Coesinas
6.
PLoS Biol ; 2(9): E259, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15309048

RESUMO

In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip) to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.


Assuntos
Proteínas de Ciclo Celular/genética , Mapeamento Cromossômico , Proteínas Fúngicas/genética , Técnicas Genéticas , Genoma Fúngico , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Sítios de Ligação , Proteínas de Ciclo Celular/química , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona , Cromossomos Artificiais de Levedura , Cromossomos Fúngicos/metabolismo , Biologia Computacional , DNA/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Meiose , Mitose , Modelos Genéticos , Dados de Sequência Molecular , Nocodazol/farmacologia , Proteínas Nucleares/química , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ligação Proteica , Software , Fatores de Tempo , Transcrição Gênica , Coesinas
7.
Cell Rep ; 15(5): 988-998, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117417

RESUMO

Cohesin is essential for the hierarchical organization of the eukaryotic genome and plays key roles in many aspects of chromosome biology. The conformation of cohesin bound to DNA remains poorly defined, leaving crucial gaps in our understanding of how cohesin fulfills its biological functions. Here, we use single-molecule microscopy to directly observe the dynamic and functional characteristics of cohesin bound to DNA. We show that cohesin can undergo rapid one-dimensional (1D) diffusion along DNA, but individual nucleosomes, nucleosome arrays, and other protein obstacles significantly restrict its mobility. Furthermore, we demonstrate that DNA motor proteins can readily push cohesin along DNA, but they cannot pass through the interior of the cohesin ring. Together, our results reveal that DNA-bound cohesin has a central pore that is substantially smaller than anticipated. These findings have direct implications for understanding how cohesin and other SMC proteins interact with and distribute along chromatin.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagem Individual de Molécula/métodos , Sequência Rica em At/genética , Sequência de Bases , Difusão , Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Nucleossomos/metabolismo , Porosidade , Ligação Proteica , Conformação Proteica , Transporte Proteico , Schizosaccharomyces/metabolismo , Coesinas
8.
Curr Biol ; 24(23): 2758-66, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25456447

RESUMO

BACKGROUND: Diverse organisms across taxa are desiccation tolerant, capable of surviving extreme water loss. Remarkably, desiccation tolerant organisms can survive years without water. However, the molecular mechanisms underlying this rare trait are poorly understood. RESULTS: Here, using Saccharomyces cerevisiae, we show that intracellular trehalose is essential for survival to long-term desiccation. The time frame for maintaining long-term desiccation tolerance consists of a balance of trehalose stockpiled prior to desiccation and trehalose degradation by trehalases in desiccated cells. The activity of trehalases in desiccated cell reveals the stunning ability of cells to retain enzymatic activity while desiccated. Interestingly, the protein chaperone Hsp104 compensates for loss of trehalose during short-term, but not long-term, desiccation. We show that desiccation induces protein misfolding/aggregation of cytoplasmic and membrane proteins using luciferase and prion reporters. We demonstrate that trehalose, but not Hsp104, mitigates the aggregation of both cytoplasmic and membrane prions. We propose that desiccated cells initially accumulate both protein and chemical chaperones, like Hsp104 and trehalose, respectively. As desiccation extends, the activities of the protein chaperones are lost because of their complexity and requirement for energy, leaving trehalose as the major protector against the aggregation of cytoplasmic and membrane proteins. CONCLUSIONS: Our results suggest that trehalose is both a more stable and more versatile protectant than protein chaperones, explaining its important role in desiccation tolerance and emphasizing the translational potential of small chemical chaperones as stress effectors.


Assuntos
Saccharomyces cerevisiae/fisiologia , Trealose/metabolismo , Desidratação , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Biol Cell ; 24(2): 115-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23171550

RESUMO

Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000-fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo , Adaptação Fisiológica , Meios de Cultura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desidratação , Técnicas de Inativação de Genes , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Sirolimo/farmacologia , Estresse Fisiológico , Fatores de Transcrição/antagonistas & inibidores , Proteínas ras/genética
10.
Genetics ; 189(2): 507-19, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21840858

RESUMO

Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20-40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Dano ao DNA , Dessecação , Genes Reguladores/genética , Complexo Mediador/genética , Complexo Mediador/metabolismo , Mutação , Concentração Osmolar , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Trealose/biossíntese , Água/metabolismo , Água/farmacologia , Leveduras/classificação , Leveduras/genética , Leveduras/fisiologia
11.
Annu Rev Cell Dev Biol ; 24: 105-29, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18616427

RESUMO

In eukaryotes, the process of sister chromatid cohesion holds the two sister chromatids (the replicated chromosomes) together from DNA replication to the onset of chromosome segregation. Cohesion is mediated by cohesin, a four-subunit SMC (structural maintenance of chromosome) complex. Cohesin and cohesion are required for proper chromosome segregation, DNA repair, and gene expression. To carry out these functions, cohesion is regulated by elaborate mechanisms involving a growing list of cohesin auxiliary factors. These factors control the timing and position of cohesin binding to chromatin, activate chromatin-bound cohesin to become cohesive, and orchestrate the orderly dissolution of cohesion. The 45-nm ringlike architecture of soluble cohesin is compatible with dramatically different mechanisms for both chromatin binding and cohesion generation. Solving the mechanism of cohesion and its complex regulation presents significant challenges but offers the potential to provide important insights into higher-order chromosome organization and chromosome biology.


Assuntos
Proteínas de Ciclo Celular , Cromátides/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Coesinas
12.
Science ; 321(5888): 566-9, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18653894

RESUMO

Chromosome segregation, transcriptional regulation, and repair of DNA double-strand breaks require the cohesin protein complex. Cohesin holds the replicated chromosomes (sister chromatids) together to mediate sister chromatid cohesion. The mechanism of how cohesion is established is unknown. We found that in budding yeast, the head domain of the Smc3p subunit of cohesin is acetylated by the Eco1p acetyltransferase at two evolutionarily conserved residues, promoting the chromatin-bound cohesin to tether sister chromatids. Smc3p acetylation is induced in S phase after the chromatin loading of cohesin and is suppressed in G(1) and G(2)/M. Smc3 head acetylation and its cell cycle regulation provide important insights into the biology and mechanism of cohesion establishment.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Acetilação , Acetiltransferases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Divisão Celular , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Fase G1 , Fase G2 , Imunoprecipitação , Lisina/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA