Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant J ; 110(5): 1237-1254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384101

RESUMO

A runner, as an elongated branch, develops from the axillary bud (AXB) in the leaf axil and is crucial for the clonal propagation of cultivated strawberry (Fragaria × ananassa Duch.). Runner formation occurs in at least two steps: AXB initiation and AXB outgrowth. HANABA TARANU (HAN ) encodes a GATA transcription factor that affects AXB initiation in Arabidopsis and promotes branching in grass species, but the underlying mechanism is largely unknown. Here, the function of a strawberry HAN homolog FaHAN in runner formation was characterized. FaHAN transcripts can be detected in the leaf axils. Overexpression (OE) of FaHAN increased the number of runners, mainly by enhancing AXB outgrowth, in strawberry. The expression of the strawberry homolog of BRANCHED1 , a key inhibitor of AXB outgrowth in many plant species, was significantly downregulated in the AXBs of FaHAN -OE lines, whereas the expression of the strawberry homolog of SHOOT MERISTEMLESS, a marker gene for AXB initiation in Arabidopsis, was upregulated. Moreover, several genes of gibberellin biosynthesis and cytokinin signaling pathways were activated, whereas the auxin response pathway genes were repressed. Further assays indicated that FaHAN could be directly activated by FaNAC2, the overexpression of which in strawberry also increased the number of runners. The silencing of FaNAC2 or FaHAN inhibited AXB initiation and led to a higher proportion of dormant AXBs, confirming their roles in the control of runner formation. Taken together, our results revealed a FaNAC2-FaHAN pathway in the control of runner formation and have provided a means to enhance the vegetative propagation of cultivated strawberry.


Assuntos
Arabidopsis , Fragaria , Arabidopsis/metabolismo , Fragaria/genética , Fragaria/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Brotos de Planta/metabolismo
2.
Plant Physiol ; 187(3): 1221-1234, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618090

RESUMO

Plant architecture is defined by fates and positions of meristematic tissues and has direct consequences on yield potential and environmental adaptation of the plant. In strawberries (Fragaria vesca L. and F. × ananassa Duch.), shoot apical meristems can remain vegetative or differentiate into a terminal inflorescence meristem. Strawberry axillary buds (AXBs) are located in leaf axils and can either remain dormant or follow one of the two possible developmental fates. AXBs can either develop into stolons needed for clonal reproduction or into branch crowns (BCs) that can bear their own terminal inflorescences under favorable conditions. Although AXB fate has direct consequences on yield potential and vegetative propagation of strawberries, the regulation of AXB fate has so far remained obscure. We subjected a number of woodland strawberry (F. vesca L.) natural accessions and transgenic genotypes to different environmental conditions and growth regulator treatments to demonstrate that strawberry AXB fate is regulated either by environmental or endogenous factors, depending on the AXB position on the plant. We confirm that the F. vesca GIBBERELLIN20-oxidase4 (FvGA20ox4) gene is indispensable for stolon development and under tight environmental regulation. Moreover, our data show that apical dominance inhibits the outgrowth of the youngest AXB as BCs, although the effect of apical dominance can be overrun by the activity of FvGA20ox4. Finally, we demonstrate that the FvGA20ox4 is photoperiodically regulated via FvSOC1 (F. vesca SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) at 18°C, but at higher temperature of 22°C an unidentified FvSOC1-independent pathway promotes stolon development.


Assuntos
Fragaria/fisiologia , Interação Gene-Ambiente , Proteínas de Plantas/metabolismo , Meio Ambiente , Fragaria/anatomia & histologia , Fragaria/genética , Fragaria/efeitos da radiação , Meristema/anatomia & histologia , Meristema/genética , Meristema/fisiologia , Meristema/efeitos da radiação , Fotoperíodo , Proteínas de Plantas/genética
4.
New Phytol ; 216(3): 841-853, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28815698

RESUMO

Vernalisation requirement is an agriculturally important trait that postpones the development of cold-sensitive floral organs until the spring. The family Rosaceae includes many agriculturally important fruit and berry crops that suffer from crop losses caused by frost injury to overwintering flower buds. Recently, a vernalisation-requiring accession of the Rosaceae model woodland strawberry (Fragaria vesca) has been identified in northern Norway. Understanding the molecular basis of the vernalisation requirement in this accession would advance the development of strawberry cultivars better adapted to temperate climate. We use gene silencing, gene expression analysis, genetic mapping and population genomics to study the genetic basis of the vernalisation requirement in woodland strawberry. Our results indicate that the woodland strawberry vernalisation requirement is endemic to northern Norwegian population, and mapping data suggest the orthologue of TERMINAL FLOWER1 (FvTFL1) as the causal floral repressor. We demonstrate that exceptionally low temperatures are needed to downregulate FvTFL1 and to make these plants competent to induce flowering at low postvernalisation temperatures in the spring. We show that altered regulation of FvTFL1 in the northern Norwegian woodland strawberry accession postpones flower induction until the spring, allowing plants to avoid winter injuries of flower buds that commonly occur in temperate regions.


Assuntos
Flores/fisiologia , Fragaria/fisiologia , Proteínas de Plantas/genética , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Genética Populacional , Noruega , Fotoperíodo , Proteínas de Plantas/metabolismo , Estações do Ano
5.
J Exp Bot ; 68(17): 4839-4850, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29048562

RESUMO

According to the external coincidence model, photoperiodic flowering occurs when CONSTANS (CO) mRNA expression coincides with light in the afternoon of long days (LDs), leading to the activation of FLOWERING LOCUS T (FT). CO has evolved in Brassicaceae from other Group Ia CO-like (COL) proteins which do not control photoperiodic flowering in Arabidopsis. COLs in other species have evolved different functions as floral activators or even as repressors. To understand photoperiodic development in the perennial rosaceous model species woodland strawberry, we functionally characterized FvCO, the only Group Ia COL in its genome. We demonstrate that FvCO has a major role in the photoperiodic control of flowering and vegetative reproduction through runners. FvCO is needed to generate a bimodal rhythm of FvFT1 which encodes a floral activator in the LD accession Hawaii-4: a sharp FvCO expression peak at dawn is followed by the FvFT1 morning peak in LDs indicating possible direct regulation, but additional factors that may include FvGI and FvFKF1 are probably needed to schedule the second FvFT1 peak around dusk. These results demonstrate that although FvCO and FvFT1 play major roles in photoperiodic development, the CO-based external coincidence around dusk is not fully applicable to the woodland strawberry.


Assuntos
Flores/crescimento & desenvolvimento , Fragaria/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Flores/genética , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Fotoperíodo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
6.
Plant Biotechnol J ; 14(9): 1852-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26940366

RESUMO

The effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short-day woodland strawberry (F. vesca L.), in which the FLOWERING LOCUS T1 (FvFT1)-SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (FvSOC1)-TERMINAL FLOWER1 (FvTFL1) pathway is essential for the correct timing of flowering. In this work, we show by transgenic approach that the silencing of the floral repressor FaTFL1 in the octoploid short-day cultivar 'Elsanta' is sufficient to induce perpetual flowering under long days without direct changes in vegetative reproduction. We also demonstrate that although the genes FaFT1 and FaSOC1 show similar expression patterns in different cultivars, the regulation of FaTFL1 varies widely from cultivar to cultivar and is correlated with floral induction, indicating that the transcription of FaTFL1 occurs at least partially independently of the FaFT1-FaSOC1 module. Our results indicate that changing the expression patterns of FaTFL1 through biotechnological or conventional breeding approaches could result in strawberries with specific flowering and runnering characteristics including new types of everbearing cultivars.


Assuntos
Flores/genética , Flores/metabolismo , Fragaria/genética , Fragaria/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fotoperíodo , Temperatura
7.
Plant Cell ; 25(9): 3296-310, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24038650

RESUMO

In the annual long-day plant Arabidopsis thaliana, suppressor of overexpression of constans1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv terminal flower1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv flowering locus T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.


Assuntos
Fragaria/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Fragaria/crescimento & desenvolvimento , Fragaria/efeitos da radiação , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Giberelinas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fotoperíodo , Filogenia , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Estações do Ano , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Análise de Sequência de DNA
8.
Plant Physiol ; 159(3): 1043-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566495

RESUMO

Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.


Assuntos
Flores/genética , Flores/fisiologia , Fragaria/genética , Fragaria/fisiologia , Mutação/genética , Fotoperíodo , Proteínas de Plantas/genética , Ecótipo , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo
9.
Front Plant Sci ; 13: 832795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310677

RESUMO

In perennial fruit and berry crops of the Rosaceae family, flower initiation occurs in late summer or autumn after downregulation of a strong repressor TERMINAL FLOWER1 (TFL1), and flowering and fruiting takes place the following growing season. Rosaceous fruit trees typically form two types of axillary shoots, short flower-bearing shoots called spurs and long shoots that are, respectively, analogous to branch crowns and stolons in strawberry. However, regulation of flowering and shoot architecture differs between species, and environmental and endogenous controlling mechanisms have just started to emerge. In woodland strawberry (Fragaria vesca L.), long days maintain vegetative meristems and promote stolon formation by activating TFL1 and GIBBERELLIN 20-OXIDASE4 (GA20ox4), respectively, while silencing of these factors by short days and cool temperatures induces flowering and branch crown formation. We characterized flowering responses of 14 accessions of seven diploid Fragaria species native to diverse habitats in the northern hemisphere and selected two species with contrasting environmental responses, Fragaria bucharica Losinsk. and Fragaria nilgerrensis Schlecht. ex J. Gay for detailed studies together with Fragaria vesca. Similar to F. vesca, short days at 18°C promoted flowering in F. bucharica, and the species was induced to flower regardless of photoperiod at 11°C after silencing of TFL1. F. nilgerrensis maintained higher TFL1 expression level and likely required cooler temperatures or longer exposure to inductive treatments to flower. We also found that high expression of GA20ox4 was associated with stolon formation in all three species, and its downregulation by short days and cool temperature coincided with branch crown formation in F. vesca and F. nilgerrensis, although the latter did not flower. F. bucharica, in contrast, rarely formed branch crowns, regardless of flowering or GA20ox4 expression level. Our findings highlighted diploid Fragaria species as rich sources of genetic variation controlling flowering and plant architecture, with potential applications in breeding of Rosaceous crops.

10.
Hortic Res ; 4: 17020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580150

RESUMO

Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA