Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 240: 84-90, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717718

RESUMO

The mechanism(s) underlying photorefractoriness in temperate zone seasonally breeding birds remains undetermined. Our recent findings reveal a link between the upregulation of GABAA receptors (GABAARs) in the premammillary nucleus (PMM) and the state of photorefractoriness. Gonadal steroid levels fluctuate during the breeding season; increasing after gonadal recrudescence and declining sharply once gonadal regression begins. Here, we examined the effect of gonadal steroid withdrawal on the expression of GABAARs in the turkey PMM. Exogenous ovarian steroids were administered and then withdrawn from turkey hens to mimic the decline of ovarian steroids levels at the end of a breeding season. The upregulation of GABAAR α3, α4, δ, π, and γ2-subunits was observed in the PMM of the steroid withdrawal group when compared to the non-steroid treatment group. The level of tyrosine hydroxylase, photopigment melanopsin, and circadian clock genes in the PMM of the steroid withdrawal group resembled the levels observed in the natural photorefractory hens and were significantly lower than those of the short-day light stimulated group. A reduction in gonadotropin-releasing hormone-I mRNA expressed within the nucleus commissurae pallii was also observed in hens undergoing steroid withdrawal. These results suggest that the natural decline in circulating ovarian steroid levels may modulate the GABAergic system in the PMM through the upregulation of GABAA receptors. This, in turn, could diminish the reproductive neuroendocrine responses to light and favor a condition resembling the state of photorefractoriness.


Assuntos
Sistemas Neurossecretores/metabolismo , Ovário/metabolismo , Receptores de GABA-A/genética , Esteroides/química , Perus , Animais , Feminino , Fotoperíodo , Regulação para Cima
2.
Neuroendocrinology ; 103(6): 678-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26562443

RESUMO

BACKGROUND/AIMS: Photoperiod is a major environmental cue in temperate-zone birds which synchronizes breeding with the time of year that offers the optimal environment for offspring survival. Despite continued long photoperiods, these birds eventually become refractory to the stimulating photoperiod and their reproductive systems regress. In this study, we characterized the role of γ-aminobutyric acid (GABA)ergic neurotransmission in modulating the response of the premammillary nucleus (PMM) to a gonad stimulatory photoperiod and the onset of photorefractoriness. METHODS AND RESULTS: Bilateral ablation of the PMM blocked the light-induced neuroendocrine response from occurring in photosensitive turkeys. Microarray analyses revealed an increase in GABAergic activity in the PMM of photorefractory birds as opposed to photosensitive ones, and this enhanced GABAergic activity appeared to inhibit the photoperiodic signal. Additionally, GABAA and GABAB receptors were expressed by dopamine-melatonin neurons in the PMM, and the administration of the GABA receptor agonist baclofen blocked the photoperiodic reproductive neuroendocrine responses. CONCLUSIONS: Consistent with the present findings, we propose that the long-sought-after mechanism underlying photorefractoriness is linked to the inhibitory actions of GABA. We suggest that (1) GABAergic interference with photoperiodic entrainment in the PMM initiates the photorefractory state and terminates the annual breeding season in temperate-zone birds, and (2) the PMM is a site of photoreception and photorefractoriness that controls the initiation and termination of avian reproductive seasonality.


Assuntos
Hipotálamo Posterior/lesões , Luz , Fotoperíodo , Reprodução/fisiologia , Estações do Ano , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Dopamina/metabolismo , Feminino , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Glutamato Descarboxilase/metabolismo , Hipotálamo Posterior/citologia , Melatonina/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Receptores de GABA/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação , Turquia
3.
Gen Comp Endocrinol ; 230-231: 57-66, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27055929

RESUMO

The premammillary nucleus (PMM) of the turkey mediobasal hypothalamus, where dopamine-melatonin (DA-Mel) neurons are localized, is a site for photoreception and photoperiodic time measurement, which is essential for the initiation of avian reproductive seasonality. In addition, this area could also be responsible for the onset and maintenance of photorefractoriness at the end of the breeding season due to the enhanced inhibitory effect of γ-aminobutyric acid (GABA). GABA is an inhibitory neurotransmitter in the central nervous system which interferes with the photosexual response in the turkey, a seasonally breeding bird. Here, we further characterized the GABAA receptor subunits in the PMM DA-Mel neurons related to reproductive seasonality and the onset of photorefractoriness. GABAA receptor subunits and GABA synthesis enzymes in the PMM of photosensitive and photorefractory turkey hens were identified using real-time qRT-PCR. The upregulation of GABAA receptor α1-3, ß2-3, γ1-3, ρ1-3, δ, and θ mRNA expression were observed in the PMM of photorefractory birds when compared to those of photosensitive ones while there is no change observed in the GABA synthesis enzymes, glutamate decarboxylase 1 and 2. Those upregulated GABAA receptor subunits were further examined using immunohistochemical staining and they appeared to be co-localized within the PMM DA-Mel neurons. The upregulation of GABAA receptor subunits observed in the PMM of photorefractory birds coincides with a lack of responsiveness to a light stimulus provided during the photosensitive phase. This is supported by the absence of c-fos induction and TH upregulation in the PMM and a subsequence inhibition of c-fos and GnRH-I expression in the nucleus commissurae pallii. The augmented GABAA receptor subunits expression may mediate an enhancement of inhibitory GABAergic neurotransmission and the subsequent interference with the photosexual response. This could contribute to the state of photorefractoriness and the termination of breeding activities in the turkey, a temperate zone bird.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipotálamo Posterior/metabolismo , Hipotálamo Posterior/efeitos da radiação , Luz , Receptores de GABA-A/metabolismo , Perus/metabolismo , Regulação para Cima/efeitos da radiação , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Dopamina/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/genética , Melatonina/metabolismo , Fotoperíodo , Precursores de Proteínas/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA-A/química , Reprodução/fisiologia , Reprodução/efeitos da radiação , Estações do Ano , Transmissão Sináptica , Triptofano Hidroxilase/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Horm Behav ; 64(1): 53-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23648774

RESUMO

Oxytocin (OT) is known to induce and regulate maternal behaviors in mammals via the supraoptic nucleus and paraventricular nucleus (PVN), whereas the function of mesotocin (MT; the avian homolog of OT) is poorly understood in birds. To elucidate the association of MT and the regulation of maternal behaviors in birds, we studied changes in the number of MT-immunoreactive (ir) neurons in native Thai chickens using immunohistochemistry. We observed that MT-ir neurons and fibers appeared in discrete regions located close to the third ventricle from the level of the preoptic area through the anterior hypothalamus with an abundance observed in the nucleus supraopticus, pars ventralis (SOv), nucleus preopticus medialis (POM), and PVN. The number of MT-ir neurons was low in the SOv, POM, and PVN of non-laying hens, but it increased gradually when the hens entered the laying stage, and peaked in incubating and rearing hens. We compared the number of MT-ir neurons in the SOv, POM, and PVN of native Thai hens rearing chicks (R) with that of non-rearing chicks (NR). The number of MT-ir neurons was high in the R hens, but low in the NR hens in these nuclei. For the first time, these results indicate that the association between the MT neurons and the presence of chicks might, in part, play a role in the neuroendocrine reorganization to establish and maintain maternal behaviors in native Thai chickens. MTergic activity is likely related to the contribution of rearing behavior in this equatorial precocial species.


Assuntos
Galinhas/fisiologia , Comportamento Materno/fisiologia , Ocitocina/análogos & derivados , Animais , Feminino , Hipotálamo/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Neurônios/metabolismo , Ocitocina/metabolismo , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Reprodução/fisiologia , Núcleo Supraóptico/metabolismo
5.
Gen Comp Endocrinol ; 190: 149-55, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23453962

RESUMO

The pathway for light transmission regulating the reproductive neuroendocrine system in temperate zone birds remains elusive. Based on the evidence provided from our studies with female turkeys, it is suggested that the circadian clock regulating reproductive seasonality is located in putatively photosensitive dopamine-melatonin (DA-MEL) neurons residing in the premammillary nucleus (PMM) of the caudal hypothalamus. Melanopsin is expressed by these neurons; a known photopigment which mediates light information pertaining to the entrainment of the clock. Exposure to a gonad stimulatory photoperiod enhances the activity of the DAergic system within DA-MEL neurons. DAergic activity encoding the light information is transmitted to the pars tuberalis, where thyroid-stimulating hormone, beta (TSHß) cells reside, and induces the release of TSH. TSH stimulates tanycytes lining the base of the third ventricle and activates type 2 deiodinase in the ependymal which enhances triiodothyronine (T3) synthesis. T3 facilitates the release of gonadotropin-releasing hormone-I which stimulates luteinizing hormone/follicle stimulating hormone release and gonad recrudescence. These data taken together with the findings that clock genes are rhythmically expressed in the PMM where DA-MEL neurons are localized imply that endogenous oscillators containing photoreceptors within DA-MEL neurons are important in regulating the DA and MEL rhythms that drive the circadian cycle controlling seasonal reproduction.


Assuntos
Aves/fisiologia , Sistemas Neurossecretores/metabolismo , Reprodução/fisiologia , Animais , Aves/metabolismo , Proteínas CLOCK , Dopamina/metabolismo , Feminino , Melatonina/metabolismo , Neurônios/metabolismo , Fotoperíodo , Opsinas de Bastonetes/metabolismo , Estações do Ano
6.
Front Physiol ; 14: 1275922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074318

RESUMO

Artificial insemination is a standard practice in the turkey breeder industry to ensure the production of fertile eggs. Even though hens are inseminated on a weekly basis, their fertility tends to decline after a few weeks of production. Avian species have a specialized structures called sperm storage tubules (SSTs), located in the uterovaginal junction (UVJ) of the oviduct. The ability of SSTs to store sperm is directly correlated with the fertility of the hen. The objective of the study was to examine changes in the transcriptome of the turkey hen's UVJ in response to the presence of sperm at three key stages of production. We hypothesized that repeated and prolonged exposure to sperm would alter the transcriptome of the UVJ. Samples were collected from virgin hens prior to the onset of lay, as well as from sham-inseminated (extender only) and semen-inseminated hens at early lay, peak lay, and late lay. Gene expression profiling of the UVJ was examined, and a differential expression analysis was conducted through pairwise comparisons between semen- and sham-inseminated groups at each production stage and across production stages. In the early laying stage, no significant gene expression changes were found between semen- and sham-inseminated groups. However, at peak lay, genes related to lipid biosynthesis, Wnt signaling, cell proliferation, and O-glycan biosynthesis were upregulated in the semen group, while the immune response and cytokine-cytokine receptor interaction were downregulated. In the late lay stage, the transcription pathway was upregulated in the semen group, whereas the translation pathway was downregulated. The local immune response that was suppressed during peak lay was increased at the late laying stage. In the semen-inseminated group, the UVJ exhibited advanced aging at the late laying stage, evidenced by reduced telomere maintenance and translation processes. The results from this study provide valuable insights into the alteration of the UVJ function in response to the presence of sperm at different stages of production and throughout the production cycle. Targeting the modulation of local immune response and addressing aging processes after peak production could potentially prevent or delay the decline in fertility of turkey breeder hens.

7.
Gen Comp Endocrinol ; 171(2): 189-96, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21266179

RESUMO

Hyperprolactinemia is associated with incubation behavior and ovarian regression in birds. To investigate the association of prolactin (PRL), vasoactive intestinal peptide (VIP), and dopamine (DA) with the neuroendocrine regulation of incubation behavior, changes in the number of visible VIP-immunoreactive (VIP-ir) neurons in the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) and tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the nucleus intramedialis (nI) and nucleus mamillaris lateralis (ML) of incubating native Thai hens were compared with those of nest-deprived hens. TH was used as a marker for dopaminergic (DAergic) neurons. Blood samples were collected to determine PRL levels. The localization and the number of visible VIP-ir and TH-ir neurons were determined by immunohistochemistry. Disruption of incubation behavior was accompanied by a precipitous decline in plasma PRL levels. The number of visible VIP-ir neurons in the IH-IN and TH-ir neurons in the nI and ML were high during incubation and decreased when hens were deprived of their nests. This study indicated an association between VIP neurons in the IH-IN and DA neurons in the nI and ML with the degree of hyperprolactinemia, suggesting that the expression of incubation behavior in birds might be, in part, regulated by the DAergic input from the nI and ML to VIP neurons in the IH-IN and subsequent PRL release.


Assuntos
Encéfalo/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Galinhas , Dopamina/metabolismo , Feminino , Imuno-Histoquímica , Tamanho do Órgão , Ovário/metabolismo , Oviductos/metabolismo , Prolactina/metabolismo
8.
Gen Comp Endocrinol ; 165(1): 170-5, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19540238

RESUMO

Serotonin (5-HT) stimulation of prolactin (PRL) secretion is mediated through the dopaminergic (DAergic) system, with 5-HT ligands having no direct effect on pituitary PRL release. Infusion of 5-HT into the third ventricle (ICV) or electrical stimulation (ES) of the medial preoptic area (POM) or the ventromedial nucleus (VMN) induces an increase in circulating PRL in the turkey. These increases in PRL do not occur when a selective antagonist blocks the D(1) dopamine (DA) receptors in the infundibular area (INF). In this study, the ICV infusion of (R)(-)-DOI hydrochloride (DOI), a selective 5-HT(2A) eceptor agonist, caused PRL to increase. Pretreatment with Ketanserin tartrate salt (KETAN), a selective 5-HT(2A) receptor antagonist, blocked DOI-induced PRL secretion, attesting to the specificity of the response. DOI-induced PRL secretion was prevented when the D(1) DA receptors in the INF were blocked by the D(1) DA receptor antagonist, R(+)-SCH-23390 hydrochloride microinjection, suggesting that the DAergic activation of the vasoactive intestinal peptide (VIP)/PRL system is mediated by a stimulatory 5-HT(2A) receptor subtype. The DOI-induced PRL increase did not occur when (+/-)-8-OH-DPAT (DPAT) was concurrently infused. DPAT is a 5-T(1A) receptor agonist which appears to mediate the inhibitory influence of 5-HT on PRL secretion. When DPAT was microinjected directly into the VMN, it blocked the PRL release affected by ES in the POM. These data suggested that when 5-HT(2A) receptors are activated, they influence the release of DA to the INF. When 5-HT(1A) receptors are stimulated, they somehow inhibit the PRL-releasing actions of 5-HT(2A) receptors. This inhibition could take place centrally, or it could occur postsynaptically at the pituitary level. It is known that D(2) DA receptors in the pituitary antagonize PRL-releasing effect of VIP. A release of DA to the pituitary, initiated by 5-HT(1A) receptors, could effectively inhibit PRL secretion.


Assuntos
Prolactina/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Perus/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Anfetaminas/farmacologia , Animais , Benzazepinas/farmacologia , Feminino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Perus/metabolismo
9.
Gen Comp Endocrinol ; 163(1-2): 123-7, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19114045

RESUMO

A timing mechanism in the brain governs reproduction in seasonally breeding temperate zone birds by triggering gonad development in response to long days in the spring. The neural mechanism(s) responsible for the timing and induction of reproductive activity by this clock are unknown. Utilizing in situ hybridization, immunocytochemistry and reverse transcriptase-polymerase chain reaction techniques, a group of dopamine (DA) neurons in the premammillary nucleus (PMM) of the caudal turkey hypothalamus that synthesize and colocalize both DA and melatonin (MEL) were identified. In addition, these neurons are found to express clock genes and the circadian photoreceptor melanopsin. DA-MEL neurons reach threshold activation (c-fos expression) when a light pulse is given during the photosensitive phase. This is associated with increases in the number of gonadotropin releasing hormone-I (GnRH-I) neurones activated, as well as an up-regulation of GnRH-I mRNA expression. The expression of tyrosine hydroxylase (TH; the rate limiting enzyme in DA biosynthesis) and tryptophan hydroxylase 1, (TPH1; the first enzyme in MEL biosynthesis) and consequently DAergic-MELergic activities are associated with the daily light-dark cycle. TPH1 mRNA expression shows low levels during the light phase and high levels during the dark phase of the light/dark illumination cycle and is 180 degrees out of phase with the rhythm of TH mRNA expression. Hypothalamic DA-MEL neurons may constitute a critical cellular process involved in the generation and expression of seasonal reproductive rhythms and suggests a previously undescribed mechanism(s) by which light signals gain access to neural targets.


Assuntos
Relógios Biológicos/fisiologia , Dopamina/metabolismo , Hipotálamo/metabolismo , Melatonina/metabolismo , Neurônios/metabolismo , Fotoperíodo , Perus/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Luz , Neurônios/efeitos da radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triptofano Hidroxilase/genética , Tirosina 3-Mono-Oxigenase/genética
10.
Gen Comp Endocrinol ; 159(1): 88-97, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18761341

RESUMO

Native Thai chicken, an equatorial species breeds throughout the year, whereas turkeys are seasonal temperate zone breeder whose reproductive cycle is terminated by the onset of photorefractoriness. This study investigated VIPergic activity throughout a reproductive cycle in both species, hypothesizing that the differential expression of vasoactive intestinal peptide (VIP) would provide an insight into the differing reproductive strategies of the two species. Distribution of VIP neurons in the native Thai chicken and a comparison of VIPergic activity in the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) were investigated. VIP immunoreactivity was found throughout the native Thai chicken brain, predominantly located within the IH-IN. The pattern of VIP distribution in the native Thai chicken supports the findings reported in temperate zone species. Unlike the turkey, where there is a dissociation between VIPergic activity and prolactin levels during photorefractoriness, in the native Thai chicken, which do not express photorefractoriness, changes in VIP immunoreactive (VIP-ir) neurons within the IH-IN were directly correlated with prolactin throughout the reproductive cycle. VIPergic activity reached its lowest level after hatching of the chicks in the native Thai chicken, while in the turkey VIPergic activity was lowest only after exposure to a short day photoperiod and the acquisition of photosensitivity. This suggests that VIP neurons in the IH-IN may play a pivotal role in regulating the reproductive cycle and its differential expression following hatching of the young may, in part, account for the difference in reproductive mode between equatorial, continually breeding, non-photoperiodic birds and seasonally breeding, photoperiodic birds.


Assuntos
Galinhas/fisiologia , Reprodução/fisiologia , Perus/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Animais , Galinhas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Fotoperíodo , Estações do Ano , Perus/sangue , Peptídeo Intestinal Vasoativo/sangue
11.
Gen Comp Endocrinol ; 159(1): 107-15, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18765240

RESUMO

Dopamine (DA) has a pivotal role in avian prolactin (PRL) secretion, acting centrally through D(1) DA receptors to stimulate PRL secretion by operating through vasoactive intestinal peptide (VIP). DA also inhibits PRL secretion by activating D(2) DA receptors at the pituitary level. This study was designed to investigate the distribution of DA neurons in the native Thai chicken, utilizing tyrosine hydroxylase (TH) as a marker for dopaminergic neurons. The differential expression of hypothalamic TH immunoreactive (TH-ir) neurons was also compared across the reproductive cycle. The results revealed that TH-ir neurons and fibers were found throughout the brain of the laying hen and were predominantly located within the diencephalon and mesencephalon. The observed distribution pattern of TH immunoreactivity was consistent with that reported previously in several avian species. However, changes in the number of TH-ir neurons in the nucleus intramedialis (nI) were observed across the reproductive cycle and correlated directly with variations in PRL levels. The population of TH-ir neurons in the nI increased significantly during the egg incubation period, where circulating PRL levels were the greatest. This study indicates, for the first time, that an association exists between DA neurons and the regulation of the reproductive system in the native Thai chicken. There is a paucity of information about the reproductive neuroendocrine regulation of tropical non-seasonally breeding avian species and it is suggested that the differential expression of DA neurons in the nI might play a role in the control of VIP secretion and subsequent PRL release in such birds.


Assuntos
Encéfalo/metabolismo , Galinhas/metabolismo , Dopamina/metabolismo , Animais , Encéfalo/citologia , Feminino , Imuno-Histoquímica , Neurônios/metabolismo , Hipófise/fisiologia , Prolactina/metabolismo , Receptores de Dopamina D1/metabolismo , Reprodução/fisiologia
12.
Acta Histochem ; 116(1): 131-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23886495

RESUMO

In the turkey, exogenous serotonin (5-hydroxytryptamine, 5-HT) increases prolactin (PRL) secretion by acting through the dopaminergic (DAergic) system. In the present study, infusion of the 5-HT(2C) receptor agonist, (R)(-)-DOI hydrochloride (DOI), into the third ventricle stimulates PRL secretion, whereas the 5-HT(1A) receptor agonist, (+/-)-8-OH-DPAT hydrobromide (DPAT), inhibits PRL secretion. Using the immediate-early gene, c-fos, as an indicator of neuronal activity, in situ hybridization histochemistry showed preferential c-fos co-localization within tyrosine hydroxylase immunoreactive neurons (the rate limiting enzyme in DA synthesis) in the areas of the nucleus preopticus medialis (POM) and the nucleus premammillaris (PMM), in response to DPAT and DOI, respectively. To clarify the involvement of 5-HT(1A) and 5-HT(2C) receptors in PRL regulation, their mRNA expression was determined on hypothalamic tissue sections from birds in different reproductive stages. A significant difference in 5-HT1A receptor was observed, with the POM of hypoprolactinemic short day and photorefractory birds showing the highest expression. 5-HT2C receptors mRNA did not change during the reproductive cycle. The data presented support the notion that DA neurons in the PMM and POM mediate the stimulatory and inhibitory effects of 5-HT, respectively, on PRL secretion and the 5-HTergic system can both stimulate and inhibit PRL secretion.


Assuntos
Proteínas Aviárias/fisiologia , Hipotálamo/metabolismo , Prolactina/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Perus/metabolismo , Animais , Feminino , Expressão Gênica , Fenômenos Reprodutivos Fisiológicos
13.
Acta Histochem ; 115(6): 626-36, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23466257

RESUMO

Changes in the number of hypothalamic gonadotropin releasing hormone-I (GnRH-I) neurons within the Nucleus commissurae pallii (nCPa) were associated with the reproductive cycle of native Thai chickens. In order to further understand the association of GnRH-I in the regulation of brooding behavior in this bird, the native Thai chickens were divided into two groups; chick-rearing (R) and non-chick-rearing (NR) hens. Numbers of visible of GnRH-I-immunoreactive (GnRH-I-ir) neurons in the hypothalamus of R and NR hens were compared utilizing immunohistochemistry. Numbers of visible GnRH-I-ir neurons within the Nucleus anterior medialis hypothalami, Nucleus suprachaiasmaticus, pars medialis, Nucleus septalis lateralis, Nucleus paraventricularis magnocellularis, and Regio lateralis hypothalami areas were observed in both groups, but no differences were seen between R and NR hens. The number of visible GnRH-I neurons in the nCPa was higher (P<0.05) in the NR than in R hens, and increased in NR hens by day 14 after chick removal. These findings suggest, for the first time, an association of the GnRH system with brooding behavior in continuously breeding birds. Furthermore, the expression of brooding behavior of native Thai chickens might be regulated, in part, by GnRH-I neurons in the nCPa.


Assuntos
Comportamento Animal/fisiologia , Galinhas/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Comportamento Materno/fisiologia , Neurônios/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Hipotálamo/citologia , Masculino , Reprodução/fisiologia
14.
Acta Histochem ; 115(3): 209-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22795268

RESUMO

Vasoactive intestinal peptide (VIP) is the avian prolactin releasing factor and changes in the concentrations of plasma prolactin (PRL) are found during the avian reproductive cycle. This study investigated the changes in the VIP/PRL system of native Thai hens rearing their young as compared to hens deprived of rearing their chicks. The number of VIP-immunoreactive (VIP-ir) neurons in the Nucleus inferioris hypothalami (IH) and Nucleus infundibuli hypothalami (IN) of hens rearing chicks (R) were compared with those of non-rearing chicks (NR). Plasma PRL levels were determined by enzyme-linked immunosorbent assay. The localization and number of VIP-ir neurons were determined by immunohistochemistry. The numbers of VIP-ir neurons in the IH-IN areas were high in the R hens, whereas the number of VIP-ir neurons decreased in the NR hens as compared to their respective R hens. During the rearing period, changes in the VIP-ir neurons within the IH-IN were correlated with plasma PRL levels. The results of the present study indicate for the first time that the VIP/PRL system plays a role in neuroendocrine reorganization to establish maternal behavior in native Thai chickens. The VIP/PRL system functions not only as a well established key regulator of incubation behavior, but is also involved in the regulation of rearing behavior. It is possible that VIP and the decline in the number of VIP-ir neurons and in turn VIPergic activity and the decrease in PRL levels are related to their contribution to rearing behavior of this non-seasonal breeding, equatorial precocial species.


Assuntos
Galinhas/fisiologia , Comportamento Materno/fisiologia , Sistemas Neurossecretores/metabolismo , Animais , Galinhas/sangue , Galinhas/metabolismo , Feminino , Imuno-Histoquímica , Neurônios/citologia , Neurônios/metabolismo , Prolactina/sangue , Tailândia , Peptídeo Intestinal Vasoativo/análise
15.
Acta Histochem ; 114(5): 409-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21872303

RESUMO

Gonadotropin releasing hormone-I (GnRH-I) is known to regulate the avian reproductive system. We investigated the roles of GnRH-I in the regulation of the reproductive system of the native Thai chicken. The distribution of GnRH-I neurons and changes in GnRH-I-immunoreactive (-ir) neurons throughout the reproductive stages and between incubating and nest-deprived hens were analyzed utilizing immunohistochemical techniques. The results revealed that GnRH-I-ir neurons were distributed in a discrete region lying close to the third ventricle from the level of preoptic area through the anterior hypothalamus, with the greatest abundance found within the nucleus commissurae pallii (nCPa). The number of GnRH-I-ir neurons in the nCPa was highest in laying hens when compared with that in the other reproductive stages. Nest deprivation caused an increase in the number of GnRH-I-ir neurons in the nCPa of nest-deprived hens when compared with incubating hens. These results indicate that GnRH-I expression is correlated with the reproductive state in the native Thai chicken and may be, in part, regulated by it. This study also confirms a pivotal role of GnRH-I in controlling avian reproduction of this non-seasonal breeding, equatorial species.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Galinhas/metabolismo , Hormônio Liberador de Gonadotropina/análise , Neurônios/imunologia , Neurônios/metabolismo , Reprodução/fisiologia , Animais , Encéfalo/imunologia , Galinhas/imunologia , Feminino , Hormônio Liberador de Gonadotropina/imunologia , Imuno-Histoquímica , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA