Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 24(2): A168-73, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832570

RESUMO

nonresonant surface enhanced Raman scattering by optical phonons of ZnO nanocrystals on and beneath silver and gold island films is reported. For both configurations comparable SERS efficiency is observed, proving their potential utility. Variations in peak intensities can be attributed to difference in the morphology of island films on and beneath nanocrystals as well as to variation of the interface between semiconductor and metal. The dominant peaks in the SERS spectra are assigned to surface optical phonon modes.

2.
Nanotechnology ; 24(41): 415202, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060613

RESUMO

Current-voltage and Kelvin probe force microscopy (KPFM) measurements were performed on single ZnO nanowires. Measurements are shown to be strongly correlated with the contact behavior, either Ohmic or diode-like. The ZnO nanowires were obtained by metallo-organic chemical vapor deposition (MOCVD) and contacted using electronic-beam lithography. Depending on the contact geometry, good quality Ohmic contacts (linear I-V behavior) or non-linear (diode-like) contacts were obtained. Current-voltage and KPFM measurements on both types of contacted ZnO nanowires were performed in order to investigate their behavior. A clear correlation could be established between the I-V curve, the electrical potential profile along the device and the nanowire geometry. Some arguments supporting this behavior are given based on technological issues and on depletion region extension. This work will help to better understand the electrical behavior of Ohmic contacts on single ZnO nanowires, for future applications in nanoscale field-effect transistors and nano-photodetectors.


Assuntos
Nanofios/química , Óxido de Zinco/química , Eletricidade , Microscopia de Força Atômica , Nanotecnologia , Nanofios/ultraestrutura , Propriedades de Superfície
3.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683800

RESUMO

In this study, we fabricated a hybrid plasmonic/semiconductor material by combining the chemical bath deposition of zinc oxide nanowires (ZnONWs) with the physical vapor deposition of aluminum nanostructures (AlNSs) under controlled temperature and atmosphere. The morphological and the optical properties of the ZnONWs/AlNSs hybrid material fabricated at different temperatures (250, 350, and 450 °C) and thicknesses (5, 7, and 9 nm) of Al layers were investigated. By adjusting the deposition and annealing parameters, it was possible to tune the size distribution of the AlNSs. The resonant coupling between the plasmonic AlNSs and ZnONWs leads to an enhanced photoluminescence response. The photocatalytic activity was studied through photodegradation under UV-light irradiation of methylene blue (MB) adsorbed at the surface of ZnO. The MB photodegradation experiment reveals that the ZnONWs covered with 7 nm aluminum film and annealed at 450 °C exhibit the highest degradation efficiency. The comparison between ZnONws and ZnONws/AlNSs shows a photoluminescence enhancement factor of 1.7 and an increase in the kinetics constant of photodegradation with a factor of 4.

4.
Nano Lett ; 9(11): 3914-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19754071

RESUMO

Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158228

RESUMO

Long-range interaction in regular metallic nanostructure arrays can provide the possibility to manipulate their optical properties, governed by the excitation of localized surface plasmon (LSP) resonances. When assembling the nanoparticles in an array, interactions between nanoparticles can result in a strong electromagnetic coupling for specific grating constants. Such a grating effect leads to narrow LSP peaks due to the emergence of new radiative orders in the plane of the substrate, and thus, an important improvement of the intensity of the local electric field. In this work, we report on the optical study of LSP modes supported by square arrays of gold nanodiscs deposited on an indium tin oxyde (ITO) coated glass substrate, and its impact on the surface enhanced Raman scattering (SERS) of a molecular adsorbate, the mercapto benzoic acid (4-MBA). We estimated the Raman gain of these molecules, by varying the grating constant and the refractive index of the surrounding medium of the superstrate, from an asymmetric medium (air) to a symmetric one (oil). We show that the Raman gain can be improved with one order of magnitude in a symmetric medium compared to SERS experiments in air, by considering the appropriate grating constant. Our experimental results are supported by FDTD calculations, and confirm the importance of the grating effect in the design of SERS substrates.

6.
Nanoscale ; 12(11): 6394-6402, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32140696

RESUMO

The arrangement of plasmonic nanoparticles in a non-symmetrical environment can feature far-field and/or near-field interactions depending on the distance between the objects. In this work, we study the hybridization of three intrinsic plasmonic modes (dipolar, quadrupolar and hexapolar modes) sustained by one elliptical aluminium nanocylinder, as well as behavior of the hybridized modes when the nanoparticles are organized in arrays or when the refractive index of the surrounding medium is changed. The position and the intensity of these hybridized modes were shown to be affected by the near-field and far-field interactions between the nanoparticles. In this work, two hybridized modes were tuned in the UV spectral range to spectrally coincide with the intrinsic interband excitation and emission bands of ZnO nanocrystals. The refractive index of the ZnO nanocrystal layer influences the positions of the plasmonic modes and increases the role of the superstrate medium, which in turn results in the appearance of two separate modes in the small spectral region. Hence, the enhancement of ZnO nanocrystal photoluminescence benefits from the simultaneous excitation and emission enhancements.

7.
Nanoscale ; 10(17): 8240-8245, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29682663

RESUMO

We systematically investigate the metallic photoluminescence (MPL) emitted from plasmonic nanoparticles (NPs) upon excitation with ultrafast laser pulses using a scanning confocal optical microscope (SCOM). By comparing the emission spectra of Au NPs of varying dimensions with the corresponding dark-field scattering spectra, indications are found that MPL encompasses two emission channels: the particle plasmons (PPs) and the electron-hole (e-h) pair recombination. The plasmons can be interpreted to play a twofold role: in the excitation process they provide the local field enhancement, and in the emission process they offer extra radiation channels.

8.
J Phys Chem B ; 109(8): 3195-8, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851340

RESUMO

Single two-dimensional planar silver arrays and one-dimensional linear gold chains of nanoparticles were investigated by dark-field surface plasmon spectroscopy and studied as a function of interparticle distance, particle size, and number of particles. In agreement with recent theoretical predictions, a red shift of the surface plasmon resonance occurring in two-dimensional arrays was found for lattice spacings below 200 nm. This red shift is associated with a significant broadening of the resonance and is attributed to the onset of near-field interactions. We found that the relative contributions of the long-range and short-range interactions in two-dimensional arrays of particles are fundamentally different to those occurring in individual linear chains.

9.
Nano Lett ; 8(3): 935-40, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18288814

RESUMO

Short range surface plasmon resonators are investigated at the nanometer scale. Gold nanorods (30 nm in diameter) were microfabricated and probed by photoemission electron microscopy under direct laser light excitation. Resonances presenting various numbers of lobes occur for specific rod lengths. A simple analytical model shows that the successive resonant lengths differ by a multiple of one-half of the wavelength of the supported short-range surface plasmon polariton.

10.
Nano Lett ; 5(4): 615-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15826096

RESUMO

The sub-diffraction imaging of the optical near-field in nanostructures, based on a photochemical technique, is reported. A photosensitive azobenzene-dye polymer is spin coated onto lithographic structures and is subsequently irradiated with laser light. Photoinduced mass transport creates topographic modifications at the polymer film surface that are then measured with atomic force microscopy (AFM). The AFM images correlate with rigorous theoretical calculations of the near-field intensities for a range of different nanostructures and illumination polarizations. This approach is a first step toward additional methods for resolving confined optical near fields, which can augment scanning probe methodologies for high spatial resolution of optical near fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA