Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 104: 273-283, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25624787

RESUMO

The Iowa City Landfill in eastern Iowa, United States, experienced a fire lasting 18 days in 2012, in which a drainage layer of over 1 million shredded tires burned, generating smoke that impacted the surrounding metropolitan area of 130,000 people. This emergency required air monitoring, risk assessment, dispersion modeling, and public notification. This paper quantifies the impact of the fire on local air quality and proposes a monitoring approach and an Air Quality Index (AQI) for use in future tire fires and other urban fires. Individual fire pollutants are ranked for acute and cancer relative risks using hazard ratios, with the highest acute hazard ratios attributed to SO2, particulate matter, and aldehydes. Using a dispersion model in conjunction with the new AQI, we estimate that smoke concentrations reached unhealthy outdoor levels for sensitive groups out to distances of 3.1 km and 18 km at 24-h and 1-h average times, respectively. Modeled and measured concentrations of PM2.5 from smoke and other compounds such as VOCs and benzo[a]pyrene are presented at a range of distances and averaging times, and the corresponding cancer risks are discussed. Through reflection on the air quality response to the event, consideration of cancer and acute risks, and comparison to other tire fires, we recommend that all landfills with shredded tire liners plan for hazmat fire emergencies. A companion paper presents emission factors and detailed smoke characterization.

2.
J Geophys Res Atmos ; 121(9): 5071-5089, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27672535

RESUMO

Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA