Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 171: 113511, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36450305

RESUMO

The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Inflamação , Sistema Imunitário
2.
Oncol Rep ; 47(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779496

RESUMO

The devastating complications of coronavirus disease 2019 (COVID­19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS­CoV­2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID­19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID­19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot­product approach was used initially to identify potential CFs that affect COVID­19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID­19 core literature (~1­year­old) did not allow sufficient time for the direct effects of numerous CFs on COVID­19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature­related discovery approach was used to augment the COVID­19 core literature­based 'direct impact' CFs with discovery­based 'indirect impact' CFs [CFs were identified in the non­COVID­19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID­19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID­19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID­19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID­19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID­19 CFs. On the whole, the present study demonstrates that COVID­19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.


Assuntos
COVID-19/epidemiologia , Neoplasias Gastrointestinais/epidemiologia , COVID-19/etiologia , COVID-19/imunologia , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/imunologia , Humanos , Fatores de Risco , SARS-CoV-2/fisiologia , Fatores Socioeconômicos
3.
Toxicol Rep ; 8: 1616-1637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485092

RESUMO

The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.

4.
World J Gastroenterol ; 26(33): 4889-4899, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32952337

RESUMO

Inflammatory bowel disease (IBD) incidence has been increasing steadily, most dramatically in the Western developed countries. Treatment often includes lifelong immunosuppressive therapy and surgery. There is a critical need to reduce the burden of IBD and to discover medical therapies with better efficacy and fewer potential side-effects. Repurposing of treatments originally studied in other diseases with similar pathogenesis is less costly and time intensive than de novo drug discovery. This study used a treatment repurposing methodology, the literature-related discovery and innovation (LRDI) text mining system, to identify potential treatments (developed for non-IBD diseases) with sufficient promise for extrapolation to treatment of IBD. By searching for desirable patterns of twenty key biomarkers relevant to IBD (e.g., inflammation, reactive oxygen species, autophagy, barrier function), the LRDI-based query retrieved approximately 9500 records from Medline. The most recent 350 records were further analyzed for proof-of-concept. Approximately 18% (64/350) met the criteria for discovery (not previously studied in IBD human or animal models) and relevance for application to IBD treatment. Many of the treatments were compounds derived from herbal remedies, and the majority of treatments were being studied in cancer, diabetes, and central nervous system disease, such as depression and dementia. As further validation of the search strategy, the query identified ten treatments that have just recently begun testing in IBD models in the last three years. Literature-related discovery and innovation text mining contains a unique search strategy with tremendous potential to identify treatments for repurposing. A more comprehensive query with additional key biomarkers would have retrieved many thousands more records, further increasing the yield of IBD treatment repurposing discovery.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Animais , Reposicionamento de Medicamentos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico
5.
Med Hypotheses ; 61(2): 265-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12888316

RESUMO

This study predicts asymmetries in lateral organ cancer incidence from text mining of the Medline database. Lung, kidney, teste, and ovary cancers were examined. For each cancer, Medline case report articles focused solely on (1) cancer of the right organ and (2) cancer of the left organ were retrieved. The ratio of right organ to left organ articles was compared to actual patient incidence data obtained from the National Cancer Institute's (NCI) SEER database for the period 1979-1998. The agreement between the Medline record ratios and the NCI's patient incidence data ratios ranged from within 3% for lung cancer to within 1% for teste and ovary cancer. This is the first known study to generate cancer lateral incidence asymmetries from the Medline database. The technique should be applicable to other diseases and other types of system asymmetries.


Assuntos
Neoplasias/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Neoplasias Pulmonares/patologia , Masculino , Neoplasias/epidemiologia , Neoplasias Ovarianas/patologia , Programa de SEER , Neoplasias Testiculares/patologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA