Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(41): 10363-10368, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30254161

RESUMO

The biogenesis of double-membrane vesicles called autophagosomes, which sequester and transport intracellular material for degradation in lysosomes or vacuoles, is a central event in autophagy. This process requires a unique set of factors called autophagy-related (Atg) proteins. The Atg proteins assemble to organize the preautophagosomal structure (PAS), at which a cup-shaped membrane, the isolation membrane (or phagophore), forms and expands to become the autophagosome. The molecular mechanism of autophagosome biogenesis remains poorly understood. Previous studies have shown that Atg2 forms a complex with the phosphatidylinositol 3-phosphate (PI3P)-binding protein Atg18 and localizes to the PAS to initiate autophagosome biogenesis; however, the molecular function of Atg2 remains unknown. In this study, we show that Atg2 has two membrane-binding domains in the N- and C-terminal regions and acts as a membrane tether during autophagosome formation in the budding yeast Saccharomyces cerevisiae An amphipathic helix in the C-terminal region binds to membranes and facilitates Atg18 binding to PI3P to target the Atg2-Atg18 complex to the PAS. The N-terminal region of Atg2 is also involved in the membrane binding of this protein but is dispensable for the PAS targeting of the Atg2-Atg18 complex. Our data suggest that this region associates with the endoplasmic reticulum (ER) and is responsible for the formation of the isolation membrane at the PAS. Based on these results, we propose that the Atg2-Atg18 complex tethers the PAS to the ER to initiate membrane expansion during autophagosome formation.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagossomos/química , Proteínas Relacionadas à Autofagia/genética , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell Struct Funct ; 45(1): 1-8, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31787665

RESUMO

The polytopic plasma membrane protein Rim21 senses both the elevation of ambient pH and alterations in plasma membrane lipid asymmetry in the Rim101 pathway in budding yeast. Rim21 is known to undergo N-glycosylation, but the site and function of the glycosylation modification is not known. Using a systematic mutation analysis, we found that Rim21 is N-glycosylated at an unconventional motif located in the N-terminal extracellular region. The Rim21 mutant protein that failed to receive N-glycosylation showed prolonged protein lifetime compared to that of WT Rim21 protein. Although both the WT and mutant Rim21 localized to the plasma membrane, they exhibited different biochemical fractionation profiles. The mutant Rim21, but not WT Rim21, was mainly fractionated into the heavy membrane fraction. Further, compared to WT Rim21, mutant Rim21 was more easily solubilized with digitonin but was conversely more resistant to solubilization with Triton X-100. Despite these different biochemical properties from WT Rim21, mutant Rim21 protein could still activate the Rim101 pathway in response to external alkalization. Collectively, N-glycosylation of Rim21 is not indispensable for its activity as a sensor protein, but modulates the residence of Rim21 protein to some microdomains within the plasma membrane with distinct lipid conditions, thereby affecting its turnover.Key words: plasma membrane, lipid asymmetry, N-linked glycosylation, microdomain, Saccharomyces cerevisiae.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Glicosilação , Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 41(6): 3713-22, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396448

RESUMO

The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifically associate with the large subunit of the mitochondrial ribosome in GTP-dependent manner. The large ribosomal subunit stimulated the GTPase activity of Mtg1, whereas only the intrinsic GTPase activity was detectable with ObgH1. The knockdown of Mtg1 decreased the overall mitochondrial translation activity, and caused defects in the formation of respiratory complexes. On the other hand, the depletion of ObgH1 led to the specific activation of the translation of subunits of Complex V, and disrupted its proper formation. Our results suggested that Mtg1 and ObgH1 function with the large subunit of the mitochondrial ribosome, and are also involved in both the translation and assembly of respiratory complexes. The fine coordination of ribosome assembly, translation and respiratory complex formation in mammalian mitochondria is affirmed.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Transporte de Elétrons , GTP Fosfo-Hidrolases/fisiologia , Células HeLa , Humanos , Proteínas Mitocondriais/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia
4.
J Biochem ; 175(2): 155-165, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37983716

RESUMO

Autophagy is a highly conserved intracellular degradation mechanism. The most distinctive feature of autophagy is the formation of double-membrane structures called autophagosomes, which compartmentalize portions of the cytoplasm. The outer membrane of the autophagosome fuses with the vacuolar/lysosomal membrane, leading to the degradation of the contents of the autophagosome. Approximately 30 years have passed since the identification of autophagy-related (ATG) genes and Atg proteins essential for autophagosome formation, and the primary functions of these Atg proteins have been elucidated. These achievements have significantly advanced our understanding of the mechanism of autophagosome formation. This article summarizes our current knowledge on how the autophagosome precursor is generated, and how the membrane expands and seals to complete the autophagosome.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Vacúolos/metabolismo , Lisossomos/metabolismo , Lipídeos
5.
Nat Struct Mol Biol ; 31(1): 170-178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057553

RESUMO

Atg8, a ubiquitin-like protein, is conjugated with phosphatidylethanolamine (PE) via Atg7 (E1), Atg3 (E2) and Atg12-Atg5-Atg16 (E3) enzymatic cascade and mediates autophagy. However, its molecular roles in autophagosome formation are still unclear. Here we show that Saccharomyces cerevisiae Atg8-PE and E1-E2-E3 enzymes together construct a stable, mobile membrane scaffold. The complete scaffold formation induces an in-bud in prolate-shaped giant liposomes, transforming their morphology into one reminiscent of isolation membranes before sealing. In addition to their enzymatic roles in Atg8 lipidation, all three proteins contribute nonenzymatically to membrane scaffolding and shaping. Nuclear magnetic resonance analyses revealed that Atg8, E1, E2 and E3 together form an interaction web through multivalent weak interactions, where the intrinsically disordered regions in Atg3 play a central role. These data suggest that all six Atg proteins in the Atg8 conjugation machinery control membrane shaping during autophagosome formation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Relacionadas à Autofagia/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membranas/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
6.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436710

RESUMO

In macroautophagy, cellular components are sequestered within autophagosomes and transported to lysosomes/vacuoles for degradation. Although phosphatidylinositol 3-kinase complex I (PI3KCI) plays a pivotal role in the regulation of autophagosome biogenesis, little is known about how this complex localizes to the pre-autophagosomal structure (PAS). In Saccharomyces cerevisiae, PI3KCI is composed of PI3K Vps34 and conserved subunits Vps15, Vps30, Atg14, and Atg38. In this study, we discover that PI3KCI interacts with the vacuolar membrane anchor Vac8, the PAS scaffold Atg1 complex, and the pre-autophagosomal vesicle component Atg9 via the Atg14 C-terminal region, the Atg38 C-terminal region, and the Vps30 BARA domain, respectively. While the Atg14-Vac8 interaction is constitutive, the Atg38-Atg1 complex interaction and the Vps30-Atg9 interaction are enhanced upon macroautophagy induction depending on Atg1 kinase activity. These interactions cooperate to target PI3KCI to the PAS. These findings provide a molecular basis for PAS targeting of PI3KCI during autophagosome biogenesis.


Assuntos
Autofagossomos , Proteínas Relacionadas à Autofagia , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Autofagossomos/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Nat Commun ; 14(1): 5815, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726301

RESUMO

In autophagy, a membrane cisterna called the isolation membrane expands, bends, becomes spherical, and closes to sequester cytoplasmic constituents into the resulting double-membrane vesicle autophagosome for lysosomal/vacuolar degradation. Here, we discover a mechanism that allows the isolation membrane to expand with a large opening to ensure non-selective cytoplasm sequestration within the autophagosome. A sorting nexin complex that localizes to the opening edge of the isolation membrane plays a critical role in this process. Without the complex, the isolation membrane expands with a small opening that prevents the entry of particles larger than about 25 nm, including ribosomes and proteasomes, although autophagosomes of nearly normal size eventually form. This study sheds light on membrane morphogenesis during autophagosome formation and selectivity in autophagic degradation.


Assuntos
Autofagossomos , Autofagia , Citosol , Macroautofagia , Ribossomos
8.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061008

RESUMO

In selective autophagy of the nucleus (hereafter nucleophagy), nucleus-derived double-membrane vesicles (NDVs) are formed, sequestered within autophagosomes, and delivered to lysosomes or vacuoles for degradation. In Saccharomyces cerevisiae, the nuclear envelope (NE) protein Atg39 acts as a nucleophagy receptor, which interacts with Atg8 to target NDVs to the forming autophagosomal membranes. In this study, we revealed that Atg39 is anchored to the outer nuclear membrane via its transmembrane domain and also associated with the inner nuclear membrane via membrane-binding amphipathic helices (APHs) in its perinuclear space region, thereby linking these membranes. We also revealed that autophagosome formation-coupled Atg39 crowding causes the NE to protrude toward the cytoplasm, and the tips of the protrusions are pinched off to generate NDVs. The APHs of Atg39 are crucial for Atg39 crowding in the NE and subsequent NE protrusion. These findings suggest that the nucleophagy receptor Atg39 plays pivotal roles in NE deformation during the generation of NDVs to be degraded by nucleophagy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/metabolismo
9.
FEMS Yeast Res ; 10(6): 687-98, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20550582

RESUMO

Saccharomyces cerevisiaeSigma1278b has the MPR1 gene encoding the N-acetyltransferase Mpr1 that acetylates the proline metabolism intermediate Delta(1)-pyrroline-5-carboxylate (P5C)/glutamate-gamma-semialdehyde (GSA) in vitro. In addition, Mpr1 protects cells from various oxidative stresses by regulating the levels of intracellular reactive oxygen species (ROS). However, the relationship between P5C/GSA acetylation and antioxidative mechanism involving Mpr1 remains unclear. Here, we report the synthesis of oxidative stress-induced arginine via P5C/GSA acetylation catalyzed by Mpr1. Gene disruption analysis revealed that Mpr1 converts P5C/GSA into N-acetyl-GSA for arginine synthesis in the mitochondria, indicating that Mpr1 mediates the proline and arginine metabolic pathways. More importantly, Mpr1 regulate ROS generation by acetylating toxic P5C/GSA. Under oxidative stress conditions, the transcription of PUT1 encoding the proline oxidase Put1 and MPR1 was strongly induced, and consequently, the arginine content was significantly increased. We also found that two deletion mutants (Deltampr1/2 and Deltaput1) were more sensitive to high-temperature stress than the wild-type strain, but that direct treatment with arginine restored the cell viability of these mutants. These results suggest that Mpr1-dependent arginine synthesis confers stress tolerance. We propose an antioxidative mechanism that is involved in stress-induced arginine synthesis requiring Mpr1 and Put1.


Assuntos
Acetiltransferases/metabolismo , Arginina/biossíntese , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Acetilação , Acetiltransferases/genética , Técnicas de Inativação de Genes , Glutamatos/metabolismo , Redes e Vias Metabólicas , Viabilidade Microbiana , Modelos Biológicos , Mutagênese Insercional , Prolina Oxidase/metabolismo , Pirróis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
10.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32453403

RESUMO

The mechanisms underlying turnover of the nuclear pore complex (NPC) and the component nucleoporins (Nups) are still poorly understood. In this study, we found that the budding yeast Saccharomyces cerevisiae triggers NPC degradation by autophagy upon the inactivation of Tor kinase complex 1. This degradation largely depends on the selective autophagy-specific factor Atg11 and the autophagy receptor-binding ability of Atg8, suggesting that the NPC is degraded via receptor-dependent selective autophagy. Immunoelectron microscopy revealed that NPCs embedded in nuclear envelope-derived double-membrane vesicles are sequestered within autophagosomes. At least two pathways are involved in NPC degradation: Atg39-dependent nucleophagy (selective autophagy of the nucleus) and a pathway involving an unknown receptor. In addition, we found the interaction between Nup159 and Atg8 via the Atg8-family interacting motif is important for degradation of this nucleoporin not assembled into the NPC. Thus, this study provides the first evidence for autophagic degradation of the NPC and Nups, which we term "NPC-phagy" and "nucleoporinophagy."


Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microscopia Imunoeletrônica , Poro Nuclear/efeitos dos fármacos , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Proteínas de Transporte Vesicular/metabolismo
12.
Nat Struct Mol Biol ; 27(12): 1185-1193, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106658

RESUMO

The molecular function of Atg9, the sole transmembrane protein in the autophagosome-forming machinery, remains unknown. Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Here we report that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 reveals a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. These results suggest that phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion.


Assuntos
Autofagossomos/química , Proteínas Relacionadas à Autofagia/química , Proteínas de Membrana/química , Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína Vermelha Fluorescente
13.
Biotechnol Bioeng ; 103(2): 341-52, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19170243

RESUMO

The budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene, which confers resistance to the proline analogue azetidine-2-carboxylate (AZC). This gene encodes an N-acetyltransferase Mpr1 that detoxifies AZC, and the homologous genes have been found in many yeasts. Recently, we found that Mpr1 protects yeast cells by reducing the intracellular reactive oxygen species (ROS) levels under oxidative stresses, such as heat-shock, freezing, or ethanol treatment. Unlike the known antioxidant enzymes, Mpr1 is thought to acetylate toxic metabolite(s) involved in ROS generation via oxidative events. To improve the enzymatic functions of Mpr1, we applied PCR random mutagenesis to MPR1. The mutagenized plasmid library was introduced into the S. cerevisiae S288C strain lacking MPR1, and we successfully isolated two Mpr1 variants with higher AZC resistance (K63R and F65L/L117V). Interestingly, overexpression of the K63R variant was found to increase cell viability or decrease intracellular ROS levels after exposure to H(2)O(2) or ethanol compared with the wild-type Mpr1. In vitro studies with the recombinant enzymes showed that the catalytic efficiency of the K63R variant for AZC and acetyl-CoA was higher than that of the wild-type Mpr1 and that the F65L mutation greatly enhanced the thermal stability. The mutational analysis and molecular modeling suggest that an alpha-helix containing Lys63 and Phe65 has important roles in the function of Mpr1. In addition, the wild-type and K63R variant Mpr1 reduced intracellular ROS levels under ethanol stress conditions on haploid sake yeast cells. These results suggest that engineering Mpr1 might be useful in breeding oxidative stress-tolerant yeast strains.


Assuntos
Acetiltransferases/genética , Acetiltransferases/metabolismo , Azetidinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Estabilidade Enzimática , Dosagem de Genes , Peróxido de Hidrogênio/farmacologia , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação de Sentido Incorreto , Oxidantes/farmacologia , Reação em Cadeia da Polimerase/métodos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos
14.
Nat Struct Mol Biol ; 26(4): 281-288, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911189

RESUMO

A key event in autophagy is autophagosome formation, whereby the newly synthesized isolation membrane (IM) expands to form a complete autophagosome using endomembrane-derived lipids. Atg2 physically links the edge of the expanding IM with the endoplasmic reticulum (ER), a role that is essential for autophagosome formation. However, the molecular function of Atg2 during ER-IM contact remains unclear, as does the mechanism of lipid delivery to the IM. Here we show that the conserved amino-terminal region of Schizosaccharomyces pombe Atg2 includes a lipid-transfer-protein-like hydrophobic cavity that accommodates phospholipid acyl chains. Atg2 bridges highly curved liposomes, thereby facilitating efficient phospholipid transfer in vitro, a function that is inhibited by mutations that impair autophagosome formation in vivo. These results suggest that Atg2 acts as a lipid-transfer protein that supplies phospholipids for autophagosome formation.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Schizosaccharomyces/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Fosfolipídeos/metabolismo
15.
Elife ; 82019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30810528

RESUMO

In autophagy, Atg proteins organize the pre-autophagosomal structure (PAS) to initiate autophagosome formation. Previous studies in yeast revealed that the autophagy-related E3 complex Atg12-Atg5-Atg16 is recruited to the PAS via Atg16 interaction with Atg21, which binds phosphatidylinositol 3-phosphate (PI3P) produced at the PAS, to stimulate conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine. Here, we discover a novel mechanism for the PAS targeting of Atg12-Atg5-Atg16, which is mediated by the interaction of Atg12 with the Atg1 kinase complex that serves as a scaffold for PAS organization. While autophagy is partially defective without one of these mechanisms, cells lacking both completely lose the PAS localization of Atg12-Atg5-Atg16 and show no autophagic activity. As with the PI3P-dependent mechanism, Atg12-Atg5-Atg16 recruited via the Atg12-dependent mechanism stimulates Atg8 lipidation, but also has the specific function of facilitating PAS scaffold assembly. Thus, this study significantly advances our understanding of the nucleation step in autophagosome formation.


Assuntos
Autofagossomos/metabolismo , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagossomos/enzimologia , Autofagia , Endopeptidases/metabolismo , Deleção de Genes , Ligação Proteica , Proteínas Quinases/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/enzimologia
16.
J Biosci Bioeng ; 102(3): 184-92, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17046531

RESUMO

Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 were isolated from soil samples as propane-utilizing bacteria and were found to be able to utilize various gaseous and liquid n-alkanes as carbon and energy sources. One gene cluster, M-prmABCD, and two gene clusters, P-prm1ABCD and P-prm2ABCD, were cloned from the genomes of Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7, respectively. These gene clusters are homologous to the gene cluster encoding the multicomponent propane monooxygenase (prmABCD) of Gordonia sp. TY-5. The expression of prm gene clusters in Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 was shown to be induced by gaseous n-alkanes (C2-C4) except methane, suggesting that the products of these genes are involved in gaseous n-alkane oxidation. Homologous genes for an alkane hydroxylase system (alk system) involved in liquid n-alkane oxidation were also cloned from the genomic DNA of Mycobacterium sp. TY-6. The alk gene cluster was transcribed in response to liquid n-alkanes (C11-C15). These results indicate that Mycobacterium sp. TY-6 has two distinct gene clusters for multicomponent monooxygenases involved in alkane oxidation. Whole-cell reactions revealed that propane is oxidized to 1-propanol through terminal oxidation in Mycobacterium sp. TY-6 and that propane is oxidized to 1-propanol and 2-propanol through both terminal and subterminal oxidations in Pseudonocardia sp. TY-7. This study reveals the diversity of propane metabolism present in microorganisms.


Assuntos
Actinomycetales/genética , Alcanos/metabolismo , Proteínas de Bactérias/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigenases de Função Mista/genética , Mycobacterium/genética , Actinomycetales/enzimologia , Proteínas de Bactérias/biossíntese , Clonagem Molecular , Genoma Bacteriano/genética , Oxigenases de Função Mista/metabolismo , Mycobacterium/enzimologia , Oxirredução , Microbiologia do Solo
17.
FEMS Yeast Res ; 8(4): 607-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18373682

RESUMO

We previously discovered that the budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene that confers resistance to the proline analogue azetidine-2-carboxylate (AZC). The MPR1-encoded protein (Mpr1) is an N-acetyltransferase that detoxifies AZC and is a novel member of the GCN5-related N-acetyltransferase (GNAT) superfamily. Mpr1 can reduce intracellular oxidation levels and protect yeast cells from oxidative stress, heat shock, freezing, or ethanol treatment. Here, we analyzed the amino acid residues in Mpr1 involved in substrate binding and catalysis by site-directed mutagenesis. The mutated genes were expressed in Escherichia coli, and the recombinant Strep-tagged fusion proteins were analyzed in terms of AZC resistance and acetyltransferase activity. The replacement of Arg145, which is conserved in the GNAT superfamily, by Ala, Asp, Glu, Gly, or Trp led to a growth defect of transformants grown in the presence of AZC. Kinetic studies demonstrated that these mutations caused a large reduction in the affinity for AZC and acetyl-CoA, suggesting that Arg145 interacts with both substrates. Among seven conserved Tyr residues, one of which may be a catalytic residue in the GNAT superfamily, Tyr166Ala- showed no detectable activity and Tyr166Phe-Mpr1, a remarkable decrease of the k(cat)/K(m) value. This result suggests that Tyr166 is critical for the catalysis.


Assuntos
Acetiltransferases/metabolismo , Substituição de Aminoácidos/genética , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Sequência de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Azetidinocarboxílico/metabolismo , Ácido Azetidinocarboxílico/farmacologia , Sítios de Ligação , Farmacorresistência Fúngica/genética , Inativação Metabólica , Cinética , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
18.
J Bacteriol ; 189(3): 886-93, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17071761

RESUMO

In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane --> 2-propanol --> acetone --> methyl acetate --> acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism.


Assuntos
Acetona/metabolismo , Proteínas de Bactérias/metabolismo , Bactéria Gordonia/metabolismo , Propano/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Bactéria Gordonia/genética , Cetonas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , NADP/metabolismo , Oxirredução , Oxigênio/metabolismo
19.
J Bacteriol ; 185(24): 7120-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645271

RESUMO

A new isolate, Gordonia sp. strain TY-5, is capable of growth on propane and n-alkanes with C(13) to C(22) carbon chains as the sole source of carbon. In whole-cell reactions, significant propane oxidation to 2-propanol was detected. A gene cluster designated prmABCD, which encodes the components of a putative dinuclear-iron-containing multicomponent monooxygenase, including the large and small subunits of the hydroxylase, an NADH-dependent acceptor oxidoreductase, and a coupling protein, was cloned and sequenced. A mutant with prmB disrupted (prmB::Kan(r)) lost the ability to grow on propane, and Northern blot analysis revealed that polycistronic transcription of the prm genes was induced during its growth on propane. These results indicate that the prmABCD gene products play an essential role in propane oxidation by the bacterium. Downstream of the prm genes, an open reading frame (adh1) encoding an NAD(+)-dependent secondary alcohol dehydrogenase was identified, and the protein was purified and characterized. The Northern blot analysis results and growth properties of a disrupted mutant (adh1::Kan(r)) indicate that Adh1 plays a major role in propane metabolism. Two additional NAD(+)-dependent secondary alcohol dehydrogenases (Adh2 and Adh3) were also found to be involved in 2-propanol oxidation. On the basis of these results, we conclude that Gordonia sp. strain TY-5 oxidizes propane by monooxygenase-mediated subterminal oxidation via 2-propanol.


Assuntos
Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Bactéria Gordonia/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Propano/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Bactéria Gordonia/genética , NAD/metabolismo , RNA Mensageiro
20.
J Bacteriol ; 186(21): 7214-20, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15489432

RESUMO

A new isolate, Mycobacterium sp. strain P101, is capable of growth on methyl-branched alkanes (pristane, phytane, and squalane). Among ca. 10,000 Tn5-derived mutants, we characterized 2 mutants defective in growth on pristane or n-hexadecane. A single copy of Tn5 was found to be inserted into the coding region of mcr (alpha-methylacyl coenzyme A [alpha-methylacyl-CoA] racemase gene) in mutant P1 and into the coding region of mls (malate synthase gene) in mutant H1. Mutant P1 could not grow on methyl-branched alkanes. The recombinant Mcr produced in Escherichia coli was confirmed to catalyze racemization of (R)-2-methylpentadecanoyl-CoA, with a specific activity of 0.21 micromol . min(-1) . mg of protein(-1). Real-time quantitative reverse transcriptase PCR analyses indicated that mcr gene expression was enhanced by the methyl-branched alkanes pristane and squalane. Mutant P1 used (S)-2-methylbutyric acid for growth but did not use the racemic compound, and growth on n-hexadecane was not inhibited by pristane. These results suggested that the oxidation of the methyl-branched alkanoic acid is inhibited by the (R) isomer, although the (R) isomer was not toxic during growth on n-hexadecane. Based on these results, Mcr is suggested to play a critical role in beta-oxidation of methyl-branched alkanes in Mycobacterium. On the other hand, mutant H1 could not grow on n-hexadecane, but it partially retained the ability to grow on pristane. The reduced growth of mutant H1 on pristane suggests that propionyl-CoA is available for cell propagation through the 2-methyl citric acid cycle, since propionyl-CoA is produced through beta-oxidation of pristane.


Assuntos
Alcanos/metabolismo , Mycobacterium/genética , Racemases e Epimerases/metabolismo , Biodegradação Ambiental , Elementos de DNA Transponíveis , DNA Ribossômico/análise , Malato Sintase/genética , Malato Sintase/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Mycobacterium/enzimologia , Mycobacterium/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Racemases e Epimerases/genética , Análise de Sequência de DNA , Estereoisomerismo , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA