Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Can J Microbiol ; 64(11): 786-797, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29791806

RESUMO

The spatiotemporal shifts of the bacterioplankton community can mirror their transition of functional traits in an aquatic ecosystem. However, the spatiotemporal variation of the bacterioplankton community composition structure (BCCS) within a large, shallow, highly dynamic freshwater lake is still poorly understood. Here, we examined the seasonal and spatial variability of the BCCs within Poyang Lake by sequencing the 16S rRNA gene amplicon to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of the BCCs were mainly attributed to the differences between autumn and spring-winter. Higher α diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significantly lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1, and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature, and nutrient status shaped the seasonal patterns of the BCCs within Poyang Lake.


Assuntos
Actinomycetales/isolamento & purificação , Burkholderia/isolamento & purificação , Água Doce/microbiologia , Lagos/microbiologia , Fitoplâncton/isolamento & purificação , Estações do Ano , Microbiologia da Água , Actinomycetales/genética , Organismos Aquáticos , Biodiversidade , Burkholderia/genética , Ecossistema , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
2.
Archaea ; 2016: 9278929, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070167

RESUMO

Archaea plays an important role in the global geobiochemical circulation of various environments. However, much less is known about the ecological role of archaea in freshwater lake sediments. Thus, investigating the structure and diversity of archaea community is vital to understand the metabolic processes in freshwater lake ecosystems. In this study, sediment physicochemical properties were combined with the results from 16S rRNA clone library-sequencing to examine the sediment archaea diversity and the environmental factors driving the sediment archaea community structures. Seven sites were chosen from Poyang Lake, including two sites from the main lake body and five sites from the inflow river estuaries. Our results revealed high diverse archaea community in the sediment of Poyang Lake, including Bathyarchaeota (45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%), Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended Lokiarchaeota (0.7%), Aigarchaeota (0.2%), and Unclassified Archaea (3.8%). The archaea community compositions differed among sites, and sediment property had considerable influence on archaea community structures and distribution, especially total organic carbon (TOC) and metal lead (Pb) (p < 0.05). This study provides primary profile of sediment archaea distribution in freshwater lakes and helps to deepen our understanding of lake sediment microbes.


Assuntos
Archaea/classificação , Biota , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Archaea/genética , China , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Análise Espacial
3.
Springerplus ; 5: 401, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047727

RESUMO

Bacteria play a vital role in various biogeochemical processes in lacustrine sediment ecosystems. This study is among the first to investigate the spatial distribution patterns of bacterial community composition in the sediments of Poyang Lake, the largest freshwater lake of China. Sediment samples were collected from the main basins and mouths of major rivers that discharge into the Poyang Lake in May 2011. Quantitative PCR assay and pyrosequencing analysis of 16S rRNA genes showed that the bacteria community abundance and compositions of Poyang Lake sediment varied largely among sampling sites. A total of 25 phyla and 68 bacterial orders were distinguished. Burkholderiales, Gallionellales (Beta-proteobacteria), Myxococcales, Desulfuromonadales (Delta-proteobacteria), Sphingobacteriales (Bacteroidetes), Nitrospirales (Nitrospirae), Xanthomonadales (Gamma-proteobacteria) were identified as the major taxa and collectively accounted for over half of annotated sequences. Moreover, correlation analyses suggested that higher loads of total phosphorus and heavy metals (copper, zinc and cadmium) could enhance bacterial abundance in the sediment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA