Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chemistry ; : e202401327, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941241

RESUMO

The multiplexity of cancer has rendered it the second leading cause of mortality worldwide and theragnostic prodrugs have gained popularity in recent years as a means of treatment. Theragnostic prodrugs enable the simultaneous diagnosis and therapy of tumors via high-precision real-time drug release monitoring. Herein, we report the development of the small theragnostic prodrug GF, based on the nucleoside anticancer agent gemcitabine and the fluorescent dye 5(6)-carboxyfluorescein. We have successfully demonstrated its efficient internalization in tumor cells, showing localization throughout both the early and late endocytic pathways. Its mechanism of cell internalization was evaluated, confirming its independence from nucleoside transporters. Its cellular localization via confocal microscopy revealed a clathrin-mediated endocytosis mechanism, distinguishing it from analogous compounds studied previously. Furthermore, GF exhibited stability across various pH values and in human blood plasma. Subsequently, its in vitro cytotoxicity was assessed in three human cancer cell lines (A549, U87 and T98). Additionally, its pharmacokinetic profile in mice was investigated and the consequent drug release was monitored. Finally, its in vivo visualization was accomplished in zebrafish xenotransplantation models and its in vivo efficacy was evaluated in A549 xenografts. The results unveiled an intriguing efficacy profile, positioning GF as a compelling candidate warranting further investigation.

2.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209150

RESUMO

Stevia rebaudiana Bertoni is a perennial shrub from Paraguay that is nowadays widely cultivated, since it is increasingly being utilized as a sugar substitute in various foodstuffs due to its sweetness and minimal caloric content. These properties of the plant's derivatives have spurred research on their biological activities revealing a multitude of benefits to human health, including antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor actions. To our knowledge, no recent reviews have surveyed and reported published work solely on the latter. Consequently, our main objective was to present a concise, literature-based review of the biological actions of stevia derivatives in various tumor types, as studied in in vitro and in vivo models of the disease. With global cancer estimates suggesting a 47% increase in cancer cases by 2040 compared to 2020, the data reviewed in this article should provide a better insight into Stevia rebaudiana and its products as a means of cancer prevention and therapy within the context of a healthy diet.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Stevia/química , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Estudos Clínicos como Assunto , Modelos Animais de Doenças , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/metabolismo , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Glucosídeos/química , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , Concentração Inibidora 50 , Redes e Vias Metabólicas , Estrutura Molecular , Relação Estrutura-Atividade , Edulcorantes
3.
J Inorg Biochem ; 219: 111435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819801

RESUMO

The complexes [(η6-bz)Ru(bpm)Cl]PF6, (1)PF6, [(η6-bz)ClRu(µ-bpm)PtCl2]PF6, (2)PF6, [(η6-cym)ClRu(µ-bpm)PtCl2]PF6, (3)PF6, [(η6-cym)ClRu(µ-bpm)PdCl2]PF6, (4)PF6, [Pt(bpm)(cbdca)], (5) and [(η6-cym)ClRu(µ-bpm)Pt(cbdca)]PF6, (6)PF6, (bz = benzene, bpm = 2,2'-bipyrimidine, cym = p-cymene, cbdcaH2 = 1,1-cyclobutanedicarboxylic acid),were synthesized and characterized by means of 1H NMR and high-resolution ESI mass spectrometry. The complexes were transformed to the corresponding chloride salts to become soluble in aqueous media, and to be studied regarding their biological properties. However, while the heterobimetallic complexes (3)Cl and (6)Cl were almost stable, (2)Cl and (4)Cl were decomposed. The interaction of 9-MeG (9-MeG = 9-methylguanine) with (3)Cl and (6)Cl revealed that it coordinates only to the platinum center through N7. Decomposition of the heterobimetallic complexes takes place after the coordination of 9-MeG, mainly forming the complex [Pt(bpm)(9-MeG-N7)Cl]+. Notably, the cytotoxic activity of (6)Cl in cancer cells was found to be moderate when compared to cisplatin, but higher in comparison with its corresponding monomers.


Assuntos
Complexos de Coordenação/química , Platina/química , Pirimidinas/química , Rutênio/química , Animais , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cimenos/química , Guanina/análogos & derivados , Guanina/química , Células HeLa , Humanos , Hidrólise , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Células NIH 3T3 , Pirimidinas/síntese química , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
Diagnostics (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943612

RESUMO

The detection of actionable mutations in tumor tissue is a prerequisite for treatment customization in patients with metastatic colorectal cancer (mCRC). Analysis of circulating tumor DNA (ctDNA) for the identification of such mutations in patients' plasma is an attractive alternative to invasive tissue biopsies. Despite having the high analytical sensitivity required for ctDNA analysis, digital polymerase chain reaction (dPCR) technologies can only detect a very limited number of hotspot mutations, whilst a broader mutation panel is currently needed for clinical decision making. Recent advances in next-generation sequencing (NGS) have led to high-sensitivity platforms that allow screening of multiple genes at a single assay. Our goal was to develop a small, cost- and time-effective NGS gene panel that could be easily integrated in the day-to-day clinical routine in the management of patients with mCRC. We designed a targeted panel comprising hotspots in six clinically relevant genes (KRAS, NRAS, MET, BRAF, ERBB2 and EGFR) and validated it in a total of 68 samples from 30 patients at diagnosis, first and second disease progression. Results from our NGS panel were compared against plasma testing with BEAMing dPCR regarding the RAS gene status. The overall percent of agreement was 83.6%, with a positive and negative percent agreement of 74.3% and 96.2%, respectively. Further comparison of plasma NGS with standard tissue testing used in the clinic showed an overall percent agreement of 86.7% for RAS status, with a positive and negative percent agreement of 81.2% and 92.8%, respectively. Thus, our study strongly supports the validity and efficiency of an affordable targeted NGS panel for the detection of clinically relevant mutations in patients with mCRC.

5.
Eur J Med Chem ; 211: 113018, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223264

RESUMO

Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys6-GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit. These units were tethered via acid-labile programmable linkers to guide a differential drug release rate from the PDC through a combination of ester or amide and "click" type oxime ligations. The pro-drugs were designed to enable the selective targeting of malignant tumor cells with linker guided differential drug release rates. We exploited the oxime bond responsiveness against the acidic pH of the tumor microenvironment and the GnRH endocytosis via the GnRH-R GPCR which is overexpressed on cancer cells. The challenging metabolic properties of gemcitabine were addressed during design of the PDCs. We developed a rapid (1 hour) and cost-effective "click" oxime bond ligation platform to assemble in one-pot the 3 desired PDCs that does not require purification, surpassing traditional time-ineffective and low yield methods. The internalization of the tumor-homing peptide unit in cancer cells, overexpressing the GnRH-R, was first validated through confocal laser microscopy and flow cytometry analysis. Subsequently, the three PDCs were evaluated for their in vitro antiproliferative effect in prostate cancer cells. Their stability and the release of gemcitabine over time were monitored in vitro in cell culture and in human plasma using LC-MS/MS. We then assessed the ability of the developed PDCs to internalize in prostate cancer cells and to release gemcitabine. The most potent analog, designated GOXG1, was used for pharmacokinetic studies in mice. The metabolism of GOXG1 was examined in liver microsomes, as well as in buffers mimicking the pH of intracellular organelles, resulting in the identification of two metabolites. The major metabolite at low pH emanated from the cleavage of the pH-labile oxime bond, validating our design approach. NMR spectroscopy and in vitro radioligand binding assays were exploited for GOXG1 to validate that upon conjugating the drug to the peptide, the peptide microenvironment responsible for its GnRH-R binding is not perturbed and to confirm its high binding potency to the GnRH-R. Finally, the binding of GOXG1 to the GnRH-R and the associated elicitation of testosterone release in mice were also determined. The facile platform established herein for the rapid assembly of PDCs with linker controllable characteristics from aldehyde and aminooxy units through rapid "click" oxime ligation, that does not require purification steps, could pave the way for a new generation of potent cancer therapeutics, diagnostics and theranostics.


Assuntos
Desoxicitidina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Oximas/farmacologia , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores LHRH/agonistas , Animais , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Humanos , Concentração de Íons de Hidrogênio , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oximas/administração & dosagem , Oximas/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores LHRH/genética , Receptores LHRH/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Gencitabina
6.
Dalton Trans ; 50(26): 9215-9224, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34125130

RESUMO

There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.


Assuntos
Hormônio Liberador de Gonadotropina , Rutênio , Corantes Fluorescentes , Células HeLa , Humanos
7.
ESMO Open ; 4(5): e000561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749991

RESUMO

Background: Non-small-cell lung cancer (NSCLC) is recognised as a particularly heterogeneous disease, encompassing a wide spectrum of distinct molecular subtypes. With increased understanding of disease biology and mechanisms of progression, treatment of NSCLC has made remarkable progress in the past two decades. Molecular testing is considered the hallmark for the diagnosis and treatment of NSCLC, with liquid biopsies being more and more often applied in the clinical setting during the recent years. Rearrangement of the ALK gene which results in the generation of fusion oncogenes is a common molecular event in NSCLCs. Among ALK fusion transcripts, EML4-ALK fusion is frequently observed and can be targeted with ALK tyrosine kinase inhibitors (TKI). However, acquired resistance and disease progression in many cases are inevitable. Method: Here, we present the case of a patient with NSCLC treated with TKIs, in which molecular profiling of the tumour was performed with different methods of tissue and plasma testing at each disease progression. A review of the literature was further conducted to offer insights into the resistance mechanisms of ALK-rearranged NSCLC. Conclusions: Based on the results, the EML4-ALK fusion initially detected in tumour tissue was preserved throughout the course of the disease. Two additional ALK mutations were later detected in the tissue and plasma and are likely to have caused resistance to the administered TKIs. Continued research into the mechanisms of acquired resistance is required in order to increase the benefit of the patients treated with targeted ALK TKIs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Evolução Fatal , Feminino , Rearranjo Gênico , Humanos , Biópsia Líquida , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Mutação Puntual , Inibidores de Proteínas Quinases/uso terapêutico
8.
ACS Appl Bio Mater ; 2(7): 2715-2725, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030807

RESUMO

Despite the anticancer potential of natural products (NPs), their limited bioavailability necessitates laborious derivatization or covalent conjugation to delivery vehicles. To unleash their potential, we developed a nanohybrid delivery platform with a noncovalently tunable surface. Initially, the active compound was encapsulated in a macrocycle, p-sulfonatocalix[4]arene, enabling a 62 000-fold aqueous solubility amplification as also a 2.9-fold enhancement in its cytotoxicity with respect to the parent compound in SW-620 colon cancer cells. A pH stimuli responsive behavior was recorded for this formulate, where a programmable release of quercetin from the macrocycle was monitored in an acidic environment. Then, a nanoparticle gold core was decorated with calixarene hosts to accommodate noncovalently NPs. The loaded nanocarrier with the NP quercetin dramatically enhanced the cytotoxicity (>50-fold) of the parent NP in colon cancer and altered its cell membrane transport mode. In vivo experiments in a mouse 4T1 tumor model showed a reduction of tumor volume in mice treated with quercetin-loaded nanoparticles without apparent toxic effects. Further analysis of the tumor-derived RNA highlighted that treatment with quercetin-loaded nanoparticles altered the expression of 27 genes related to apoptosis.

9.
PLoS One ; 9(6): e98404, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24897521

RESUMO

Despite the pleiotropic effects of the progesterone receptor in breast cancer, the molecular mechanisms in play remain largely unknown. To gain a global view of the PR-orchestrated networks, we used next-generation sequencing to determine the progestin-regulated transcriptome in T47D breast cancer cells. We identify a large number of PR target genes involved in critical cellular programs, such as regulation of transcription, apoptosis, cell motion and angiogenesis. Integration of the transcriptomic data with the PR-binding profiling of hormonally treated cells identifies numerous components of the small-GTPases signaling pathways as direct PR targets. Progestin-induced deregulation of the small GTPases may contribute to the PR's role in mammary tumorigenesis. Transcript expression analysis reveals significant expression changes of specific transcript variants in response to the extracellular hormonal stimulus. Using the NET1 gene as an example, we show that the PR can dictate alternative promoter usage leading to the upregulation of an isoform that may play a role in metastatic breast cancer. Future studies should aim to characterize these selectively regulated variants and evaluate their clinical utility in prognosis and targeted therapy of hormonally responsive breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Receptores de Progesterona/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Promegestona/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA