RESUMO
RATIONALE: In-depth characterization of the three capsid viral proteins (VPs 1, 2, and 3) of adeno-associated viruses (AAVs) is immediately needed to ensure the consistency in gene therapy products and processes. These proteins are typically present at very low concentrations in matrices containing high concentrations of excipients and salts. Thus, there is a need for convenient methods for sample preparation before proteomic analysis. The aim of this study was to meet this need by developing a fast, reliable approach for isolating VPs in a manner enabling their efficient digestion and in-depth characterization using liquid chromatography-mass spectrometry (LC-MS). METHODS: VPs from Anc80 were precipitated with different organic solvents, and the resulting precipitates were dissolved in either sodium deoxycholate (SDC) and N-dodecyl-beta-D-maltoside (DDM) or guanidine hydrochloride (Gu-HCl). The peptides obtained by the following enzymatic digestion by either trypsin or Asp-N were analyzed using LC-MS/MS. RESULTS: We found that precipitation with chloroform/methanol/water results in fast, efficient preparation of VP samples, allowing 100% and 99.2% amino acid sequence coverage of VP1 for trypsin and Asp-N digestion, respectively. This also allowed complete sequence confirmation of VP1, VP2, and VP3 of Anc80, as well as characterization of the amino acid sequences of the N- and C-terminal regions of each VP, together with their post-translational modifications (PTMs). CONCLUSIONS: The presented method enables fast, reliable, and relatively cheap sample preparation for identifying AAV serotypes and characterizing the heterogeneity of capsid viral proteins, including their PTMs.
Assuntos
Proteínas do Capsídeo/química , Cromatografia Líquida de Alta Pressão/métodos , Dependovirus/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/química , Dependovirus/genética , Proteômica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
A manuscript version without peer-review revisions was mistakenly processed and published.
RESUMO
PURPOSE: Polysorbates are critical stabilizers in biopharmaceutical protein formulations. However, they may degrade in drug substance (DS) or drug product (DP) during storage. Degradation catalyzed by lipases present in host cell proteins (HCPs) is one suspected root cause. The purpose of this study was to develop an assay to detect lipolytic activity in biopharmaceutical DS and DP formulations. METHODS: The assay is based on the hydrolysis of the lipase substrate 4-methylumbelliferyl oleate to yield the fluorescent product 4-methylumbelliferone. RESULTS: First, the assay components and their concentrations (buffer salts and pH, solvent and inhibitor Orlistat) were established and optimized using a model lipase (Porcine pancreatic lipase) and cell culture harvest fluid that exhibited lipolytic activity. The assay was then successfully applied and thereby qualified in protein formulations and at lipase concentrations possibly encountered in actual biopharmaceutical DS and DP formulations. CONCLUSION: The lipase assay can be used to detect lipolytic activity in intermediate and final DS, for example during process optimization in downstream purification, to better and specifically reduce the level, or deplete, lipases from HCPs. The assay is also suitable to be applied during root cause investigations related to polysorbate degradation in biopharmaceutical DP.
Assuntos
Lipase/metabolismo , Lipólise , Polissorbatos/metabolismo , Animais , Hidrólise , Polissorbatos/química , SuínosRESUMO
Significant efforts are made to characterize molecular liabilities and degradation of the drug substance (DS) and drug product (DP) during various product life-cycle stages. The in vivo fate of a therapeutic protein is usually only considered in terms of pharmacokinetics (PKs) and pharmacodynamics (PDs). However, the environment in the human body differs substantially from that of the matrix (formulation) of the DP and may impact on the stability of an injected therapeutic protein. Stabilizing excipients used in protein formulations are expected to undergo more rapid distribution and dissociation in vivo, compared to a protein as a highly charged macromolecule. Thus, in vivo stability may significantly differ from shelf-life stability. In vivo degradation of the therapeutic protein may alter efficacy and/or safety characteristics such as immunogenicity. Studying the stability of a therapeutic protein in the intended body compartment can de-risk drug development in early stages of development by improving the selection of better clinical lead molecules. This review assesses the considerations when aiming to evaluate the in vivo fate of a therapeutic protein by comparing the physiology of relevant human body compartments and assessing their potential implications on the stability of a therapeutic protein. Moreover, we discuss the limitations of current experimental approaches mimicking physiologic conditions, depending on the desired route of administration, such as intravenous (IV), subcutaneous (SC), intravitreal (IVT), or intrathecal (IT) administration(s). New models more closely mimicking the relevant physiologic environment and updated analytical methods are required to understand the in vivo fate of therapeutic proteins.
Assuntos
Preparações Farmacêuticas/química , Proteínas/química , Animais , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Excipientes/química , HumanosRESUMO
PURPOSE: Polysorbates are commonly added to protein formulations and serve an important function as stabilizers. This paper reviews recent literature detailing some of the issues seen with the use of polysorbate 80 and polysorbate 20 in protein formulations. Based on this knowledge, a development strategy is proposed that leads to a control strategy for polysorbates in protein formulations. METHODS: A consortium of Biopharmaceutical scientists working in the area of protein formulations, shared experiences with polysorbates as stabilizers in their formulations. RESULTS: Based on the authors experiences and recent published literature, a recommendation is put forth for a development strategy which will lead into the appropriate control strategy for these excipients. CONCLUSIONS: An appropriate control strategy may comprise one or more elements of raw material, in-process and manufacturing controls. Additionally, understanding the role, if any, polysorbates play during stability will require knowledge of the criticality of the excipient, based upon its impact on CQAs due to variations in concentration and degradation level.
Assuntos
Produtos Biológicos/química , Composição de Medicamentos/métodos , Excipientes/química , Polissorbatos/química , Proteínas/química , Animais , Estabilidade de Medicamentos , Humanos , Hidrólise , Oxirredução , Tamanho da Partícula , Estabilidade ProteicaRESUMO
Asymmetric flow field-flow fractionation is a valuable tool for the characterization of protein aggregates in biotechnology owing to its broad size range and unique separation principle. However, in practice asymmetric flow field-flow fractionation is non-trivial to use due to the major deviations from theory and the influence on separation by various factors that are not fully understood. Here, we report methods to assess the non-ideal effects that influence asymmetric flow field-flow fractionation separation and for the first time identify experimentally the main factors that impact it. Furthermore, we propose new approaches to minimize such non-ideal behavior, showing that by adjusting the mobile phase composition (pH and ionic strength) the resolution of asymmetric flow field-flow fractionation separation can be drastically improved. Additionally, we propose a best practice method for new proteins.
Assuntos
Fracionamento por Campo e Fluxo/métodos , Proteínas/química , Fracionamento por Campo e Fluxo/instrumentação , Concentração de Íons de Hidrogênio , Concentração Osmolar , Agregados Proteicos , Proteínas/isolamento & purificaçãoRESUMO
A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model.
Assuntos
Tolerância Imunológica/imunologia , Imunoglobulina G/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Formação de Anticorpos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho da PartículaRESUMO
PURPOSE: The current study was performed to assess the precision of the principal subvisible particle measurement methods available today. Special attention was given to identifying the sources of error and the factors governing analytical performance. METHODS: The performance of individual techniques was evaluated using a commercial biologic drug product in a prefilled syringe container. In control experiments, latex spheres were used as standards and instrument calibration suspensions. RESULTS: The results reported in this manuscript clearly demonstrated that the particle measurement techniques operating in the submicrometer range have much lower precision than the micrometer size-range methods. It was established that the main factor governing the relatively poor precision of submicrometer methods in general and inherently, is their low sampling volume and the corresponding large extrapolation factors for calculating final results. CONCLUSIONS: The variety of new methods for submicrometer particle analysis may in the future support product characterization; however, the performance of the existing methods does not yet allow for their use in routine practice and quality control.
Assuntos
Técnicas de Química Analítica/métodos , Proteínas/química , Tamanho da Partícula , Agregados Proteicos , SeringasRESUMO
Although light obscuration is the "gold standard" for subvisible particle measurements in biopharmaceutical products, the current technology has limitations with respect to the detection of translucent proteinaceous particles and particles of sizes smaller and around 2 µm. Here, we describe the evaluation of a modified light obscuration sensor utilizing a novel measuring mode. Whereas standard light obscuration methodology monitors the height (amplitude) of the signal, the new approach monitors its length (width). Experimental evaluation demonstrated that this new detection mode leads to improved detection of subvisible particles of sizes smaller than 2 µm, reduction of artifacts during measurements especially of low concentrations of translucent protein particles, and higher counting accuracy as compared to flow imaging microscopy and standard light obscuration measurements.
Assuntos
Luz , Soroalbumina Bovina/química , Animais , Bovinos , Nefelometria e Turbidimetria/instrumentação , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
PURPOSE: The goal of this study was to compare and evaluate two preparative techniques for fractionation of proteinaceous subvisible particles. This work enables future studies to address the potential biological consequences of proteinaceous subvisible particles in protein therapeutic products. METHODS: Particles were generated by heat stress and separated by size using differential centrifugation and FACS (Fluorescence-activated cell sorter). Resulting fractions were characterized by size-exclusion chromatography, light obscuration, flow imaging microscopy and resonant mass measurement. RESULTS: Here we report the optimization and comprehensive evaluation of two methods for preparative fractionation of subvisible proteinaceous particles into distinct size fractions in the range between 0.25 and 100 µm: differential centrifugation and FACS. Using these methods, well-defined size fractions were prepared and characterized in detail. Critical assessment and comparison of the two techniques demonstrated their complementarity and for the first time-their relative advantages and drawbacks. CONCLUSIONS: FACS and differential centrifugation are valuable tools to prepare well-defined size-fractions of subvisible proteinaceous particles. Both techniques possess unique and advantageous attributes and will likely find complementary application in future research on the biological consequences of proteinaceous subvisible particles.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Centrifugação com Gradiente de Concentração/métodos , Citometria de Fluxo/métodos , Imunoglobulina G/isolamento & purificação , Agregados Proteicos , Anticorpos Monoclonais/análise , Imunoglobulina G/análise , Tamanho da PartículaRESUMO
PURPOSE: Protein aggregates have been discussed as a potential risk factor related to immunogenicity. Here we developed a novel human IgG transgenic (tg) mouse system expressing a mini-repertoire of human IgG1 antibodies (Abs) for the assessment of immunogenic properties of human mAb preparations. METHODS: Transgenic mice were generated using germline versions of the human Ig heavy chain γ1 (IgH-γ1), and the human Ig light chain (IgL) κ and λ genes. Only the soluble form of human IgH-γ1 was used to avoid expression of the membrane Ig-H chain and concomitant allelic exclusion of endogenous murine Ig genes. IgG1 aggregates were generated by different stress conditions such as process-related, low pH and exposure to artificial light. RESULTS: The expression of human Ig proteins induced immunological tolerance to a broad range of human IgG1 molecules in the tg mice. Immunization with IgG1 aggregates demonstrated that soluble oligomers induced by significant light-exposure and carrying neo-epitopes induced a strong immune response in tg mice. In contrast, Ab aggregates alone and monomers with neo-epitopes were not immunogenic. CONCLUSION: This mouse model is able to recognize immunogenic modifications of human IgG1. While the degree of stress-induced aggregation varies for different mAbs, our findings using a particular mAb (mAb1) demonstrate that non-covalently modified aggregates do not break tolerance, contrary to widely held opinion. The immunogenic potential of soluble aggregates of human IgG strongly depends on the presence of neo-epitopes resulting from harsh stress conditions, i.e. extensive exposure to artificial light.
Assuntos
Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Camundongos Transgênicos/imunologia , Agregados Proteicos/imunologia , Animais , Anticorpos Monoclonais/genética , Formação de Anticorpos , Sequência de Bases , Citometria de Fluxo , Humanos , Tolerância Imunológica , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Camundongos Transgênicos/genética , Dados de Sequência Molecular , Agregados Proteicos/genética , Estresse Psicológico/imunologia , TransgenesRESUMO
Measurement and characterization of subvisible particles (including proteinaceous and non-proteinaceous particulate matter) is an important aspect of the pharmaceutical development process for biotherapeutics. Health authorities have increased expectations for subvisible particle data beyond criteria specified in the pharmacopeia and covering a wider size range. In addition, subvisible particle data is being requested for samples exposed to various stress conditions and to support process/product changes. Consequently, subvisible particle analysis has expanded beyond routine testing of finished dosage forms using traditional compendial methods. Over the past decade, advances have been made in the detection and understanding of subvisible particle formation. This article presents industry case studies to illustrate the implementation of strategies for subvisible particle analysis as a characterization tool to assess the nature of the particulate matter and applications in drug product development, stability studies and post-marketing changes.
Assuntos
Nefelometria e Turbidimetria/métodos , Material Particulado/análise , Preparações Farmacêuticas/análise , Ar , Anticorpos Monoclonais/análise , Terapia Biológica , Composição de Medicamentos , Contaminação de Medicamentos , Embalagem de Medicamentos , Liofilização , Microbolhas , Técnicas Analíticas Microfluídicas , Tamanho da Partícula , Proteínas Recombinantes/análise , Espalhamento de Radiação , Óleos de Silicone , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The early secretory pathway (ESP) consisting of the endoplasmic reticulum (ER), pre-Golgi intermediates and the Golgi stack links protein synthesis to folding and vesicle trafficking to generate the membrane architecture of the eukaryotic cell. The fundamental principles that contribute to organization of the ESP remain largely unknown. We raise the possibility that assembly of the ESP is largely built on a foundation that is influenced by the kinetic and thermodynamic properties of the protein fold. Folding energetics may provide an adjustable platform for adaptor-dependent interactions with the transport machinery, suggesting the possibility that protein cargo energetics plays a central role in directing both trafficking patterns and global compartmental organization of the ESP. In this view, cargo energetics likely coordinates the composition and maturation of ER and Golgi compartments with the physiological state of the cell in different tissue and environmental settings.
Assuntos
Metabolismo Energético/fisiologia , Dobramento de Proteína , Proteínas/metabolismo , Vesículas Secretórias/fisiologia , Transdução de Sinais , Animais , HumanosRESUMO
Visible particles are a critical quality attribute for parenteral products and must be monitored. A carefully designed, executed, and controlled drug product manufacturing process including a final 100 % visual inspection and appropriate end-product controls ensures that visible particles are consistently minimized and demonstrates that the injectable DP is practically free from visible particles. Visual inspection, albeit appearing as a simple analytical procedure, requires several technical and operational controls to ensure adequate performance. To gather new data on particle visibility and shed light on this decade-old challenge, a multi-company blinded visual inspection threshold study was conducted. A major goal of the study was visual assessment of several particle types of different sizes in small volume vials, as a challenging configuration for visual inspection, across 9 biopharmaceutical companies in order to determine the visibility limit. The study results provide key insights into limitations and challenges of visual inspection, namely, no universal visibility limit can be applied to all particle types as the detectability varies with particle type, number, and size. The study findings underscore the necessity of setting realistic expectations on size-based visibility limits in visual inspection, robust procedures for analyst training and qualification, and harmonization of guidelines globally.
Assuntos
Produtos Biológicos , Contaminação de Medicamentos , Tamanho da PartículaRESUMO
Degradation of polysorbates in biopharmaceutical formulations can induce the formation of sub-visible particles (SvPs) in the form of free-fatty acids (FFAs) and potentially protein aggregates. Flow-imaging microscopy (FIM) is one of the most common techniques for enumerating and characterizing the SvPs, allowing for collection of image data of the SvPs in the size ranges of two to several hundred micrometers. The vast amounts of data obtained with FIM do not allow for rapid manual characterization by an experienced analyst and can be ambiguous. In this work, we present the application of a custom convolutional neural network (CNN) for classification of SvP images of FFAs, proteinaceous particles and silicon oil droplets, by FIM. The network was then used to predict the composition of artificially pooled test samples of unknown and labeled data with varying compositions. Minor misclassifications were observed between the FFAs and proteinaceous particles, considered tolerable for application to pharmaceutical development. The network is considered to be suitable for fast and robust classification of the most common SvPs found during FIM analysis.
Assuntos
Produtos Biológicos , Polissorbatos , Óleos de Silicone , Microscopia/métodos , Química Farmacêutica/métodos , Tamanho da Partícula , Proteínas , Ácidos Graxos não Esterificados , Redes Neurais de ComputaçãoRESUMO
PURPOSE: Accurate monitoring of the sub-visible particle load in protein biopharmaceuticals is increasingly important to drug development. Manufacturers are expected to characterize and control sub-visible protein particles in their products due to their potential immunogenicity. Light obscuration, the most commonly used analytical tool to count microscopic particles, does not allow discrimination between potentially harmful protein aggregates and harmless pharmaceutical components, e.g. silicone oil, commonly present in drug products. Microscopic image analysis in flow-microscopy techniques allows not only counting, but also classification of sub-visible particles based on morphology. We present a novel approach to define software filters for analysis of particle morphology in flow-microscopic images enhancing the capabilities of flow-microscopy. METHODS: Image morphology analysis was applied to analyze flow-microscopy data from experimental test sets of protein aggregates and silicone oil suspensions. RESULTS: A combination of four image morphology parameters was found to provide a reliable basis for automatic distinction between silicone oil droplets and protein aggregates in protein biopharmaceuticals resulting in low misclassification errors. CONCLUSIONS: A novel, custom-made software filter for discrimination between proteinaceous particles and silicone oil droplets in flow-microscopy imaging analysis was successfully developed.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Proteínas/ultraestrutura , Óleos de Silicone/análise , Microscopia/métodosRESUMO
Amyloid--a fibrillar, cross beta-sheet quaternary structure--was first discovered in the context of human disease and tissue damage, and was thought to always be detrimental to the host. Recent studies have identified amyloid fibers in bacteria, fungi, insects, invertebrates and humans that are functional. For example, human Pmel17 has important roles in the biosynthesis of the pigment melanin, and the factor XII protein of the hemostatic system is activated by amyloid. Functional amyloidogenesis in these systems requires tight regulation to avoid toxicity. A greater understanding of the diverse physiological applications of this fold has the potential to provide a fresh perspective for the treatment of amyloid diseases.
Assuntos
Amiloide/metabolismo , Bactérias/metabolismo , Amiloide/química , Amiloide/fisiologia , Animais , Fungos/metabolismo , Hemostasia/fisiologia , Humanos , Melaninas/biossíntese , Modelos Biológicos , Conformação ProteicaRESUMO
Adenoviruses (AdVs) have recently become widely used therapeutic vectors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. AdVs are large, nonenveloped viruses with an icosahedral capsid formed from several proteins that encloses double-stranded DNA. These proteins are the main components and key players in initial stages of infection by the virus particles, so their heterogeneity and content must be evaluated to ensure product and process consistency. Peptide mapping can provide detailed information on these proteins, e.g., their amino acid sequences and post-translational modifications (PTMs), which is crucial for the development and optimization of the manufacturing processes. However, sample preparation remains the main bottleneck for successful proteomic analysis of the viral proteins (VPs) of AdVs due to their low concentrations and vast stoichiometric ranges. To address this problem, we have developed a fast and efficient protocol for preparing samples for proteomic analysis of VPs of AdV5 that requires no cleaning step prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The approach enabled identification of 92% of amino acids in AdV5 VPs on average and quantification of 53 PTMs in a single LC-MS/MS experiment using trypsin protease. The data obtained demonstrate the method's potential utility for supporting the development of novel AdV-based gene therapy products (GTPs).
RESUMO
The measurement of polydisperse protein aggregates and particles in biotherapeutics remains a challenge, especially for particles with diameters of ≈ 1 µm and below (sub-micrometer). This paper describes an interlaboratory comparison with the goal of assessing the measurement variability for the characterization of a sub-micrometer polydisperse particle dispersion composed of five sub-populations of poly(methyl methacrylate) (PMMA) and silica beads. The study included 20 participating laboratories from industry, academia, and government, and a variety of state-of-the-art particle-counting instruments. The received datasets were organized by instrument class to enable comparison of intralaboratory and interlaboratory performance. The main findings included high variability between datasets from different laboratories, with coefficients of variation from 13 % to 189 %. Intralaboratory variability was, on average, 37 % of the interlaboratory variability for an instrument class and particle sub-population. Drop-offs at either end of the size range and poor agreement on maximum counts of particle sub-populations were noted. The mean distributions from an instrument class, however, showed the size-coverage range for that class. The study shows that a polydisperse sample can be used to assess performance capabilities of an instrument set-up (including hardware, software, and user settings) and provides guidance for the development of polydisperse reference materials.
Assuntos
Laboratórios , Software , Tamanho da PartículaRESUMO
INTRODUCTION: The migration of chemicals from processing materials into biopharmaceuticals can lead to various problems. Leachables from administration materials, with no possibility of further clearance, are of particular concern. Released chemicals can be toxic or react with formulation components, thereby impacting product safety. Therapeutic proteins, which are susceptible to chemical modifications, have highest risk to be affected. AIM: The aim of this study was to identify a previously unknown leachable compound from clinical administration sets, which was present above the applied generic safety threshold. METHODS: Extracts of commonly used clinical administration sets were analyzed using a recently established specific assay allowing the identification and quantification of the α,ß-unsaturated aldehyde 4-hydroxynonenal (HNE) in a drug product surrogate solution. HNE was quantified after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid extraction of the formed hydrazone by LC-MRM analysis. RESULTS: Potentially genotoxic HNE was a leachable compound from all tested administration sets, in parts exceeding safety thresholds for genotoxicants. The HNE-releasing polymer was identified as PVC. CONCLUSION: Clinical administration sets should be, like manufacturing materials and container closure systems, in the focus of routine leachables studies. Manufacturers of clinical administration sets should show responsibility to avoid the presence of safety concerning chemicals, like HNE.