Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38961847

RESUMO

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to increased risk in blood pressure elevation. The distal convoluted tubule is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by Kir4.1/5.1; decrease in intracellular Cl-; activation of WNK4, interaction and phosphorylation of Ste20/SPS1-related Proline/Alanine-rich Kinase (SPAK); binding of the calcium-binding protein 39 (cab39) adaptor protein to SPAK leading to its trafficking to the apical membrane; and SPAK binding, phosphorylating, and activating NCC. As Kidney-Specific With-No-Lysine (K) Kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and L-WNK1 and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice are not hyperkalemic. While wild-type mice under low dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in the KS-WNK1, did not change under the low K+ diet. Thus, in the absence of KS-WNK1 the transporter has lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there is no formation of WNK bodies. These bodies are observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.

2.
Exp Cell Res ; 330(1): 29-42, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064463

RESUMO

The TGFß signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFß signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFß signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFß signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFß signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFß target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFß signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFß signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion.


Assuntos
Proteínas ADAM/metabolismo , Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Neoplasias Esofágicas/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Queratinócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína ADAMTS1 , Linhagem Celular Tumoral , Proliferação de Células , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Interleucina-1/metabolismo , Queratinócitos/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador alfa/metabolismo , Proteínas Roundabout
3.
Mol Cancer ; 14: 24, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644061

RESUMO

BACKGROUND: Tumor metastasis is responsible for 90% of cancer-related deaths. Recently, a strong link between microRNA dysregulation and human cancers has been established. However, the molecular mechanisms through which microRNAs regulate metastasis and cancer progression remain unclear. METHODS: We analyzed the reciprocal expression regulation of miR-31 and SOX4 in esophageal squamous and adenocarcinoma cell lines by qRT-PCR and Western blotting using overexpression and shRNA knock-down approaches. Furthermore, methylation studies were used to assess epigenetic regulation of expression. Functionally, we determined the cellular consequences using migration and invasion assays, as well as proliferation assays. Immunoprecipitation and ChIP were used to identify complex formation of SOX4 and co-repressor components. RESULTS: Here, we report that SOX4 promotes esophageal tumor cell proliferation and invasion by silencing miR-31 via activation and stabilization of a co-repressor complex with EZH2 and HDAC3. We demonstrate that miR-31 is significantly decreased in invasive esophageal cancer cells, while upregulation of miR-31 inhibits growth, migration and invasion of esophageal adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) cell lines. miR-31, in turn, targets SOX4 for degradation by directly binding to its 3'-UTR. Additionally, miR-31 regulates EZH2 and HDAC3 indirectly. SOX4, EZH2 and HDAC3 levels inversely correlate with miR-31 expression in ESCC cell lines. Ectopic expression of miR-31 in ESCC and EAC cell lines leads to down regulation of SOX4, EZH2 and HDAC3. Conversely, pharmacologic and genetic inhibition of SOX4 and EZH2 restore miR-31 expression. We show that SOX4, EZH2 and HDAC3 form a co-repressor complex that binds to the miR-31 promoter, repressing miR-31 through an epigenetic mark by H3K27me3 and by histone acetylation. Clinically, when compared to normal adjacent tissues, esophageal tumor samples show upregulation of SOX4, EZH2, and HDAC3, and EZH2 expression is significantly increased in metastatic ESCC tissues. CONCLUSIONS: Thus, we identified a novel molecular mechanism by which the SOX4, EZH2 and miR-31 circuit promotes tumor progression and potential therapeutic targets for invasive esophageal carcinomas.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , MicroRNAs/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição SOXC/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Neoplasias Esofágicas/patologia , Histona Desacetilases/genética , Humanos , MicroRNAs/química , Invasividade Neoplásica , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXC/química , Fatores de Transcrição SOXC/genética
4.
Hypertension ; 81(4): 801-810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258567

RESUMO

BACKGROUND: Potassium regulates the WNK (with no lysine kinase)-SPAK (STE20/SPS1-related proline/alanine-rich kinase) signaling axis, which in turn controls the phosphorylation and activation of the distal convoluted tubule thiazide-sensitive NCC (sodium-chloride cotransporter) for sodium-potassium balance. Although their roles in the kidney have not been investigated, it has been postulated that Cab39 (calcium-binding protein 39) or Cab39l (Cab39-like) is required for SPAK/OSR1 (oxidative stress response 1) activation. This study demonstrates how they control the WNK-SPAK/OSR1-NCC pathway. METHODS: We created a global knockout of Cab39l and a tamoxifen-inducible, NCC-driven, Cab39 knockout. The 2 lines were crossed to generate Cab39-DKO (Cab39 double knockout) animals. Mice were studied under control and low-potassium diet, which activates WNK-SPAK/OSR1-NCC phosphorylation. Western blots were used to assess the expression and phosphorylation of proteins. Blood and urine electrolytes were measured to test for compromised NCC function. Immunofluorescence studies were conducted to localize SPAK and OSR1. RESULTS: Both Cab39l and Cab39 are expressed in distal convoluted tubule, and only the elimination of both leads to a striking absence of NCC phosphorylation. Cab39-DKO mice exhibited a loss-of-NCC function, like in Gitelman syndrome. In contrast to the apical membrane colocalization of SPAK with NCC in wild-type mice, SPAK and OSR1 become confined to intracellular puncta in the Cab39-DKO mice. CONCLUSIONS: In the absence of Cab39 proteins, NCC cannot be phosphorylated, resulting in a Gitelman-like phenotype. Cab39 proteins function to localize SPAK at the apical membrane with NCC, reminiscent of the Cab39 yeast homolog function, translocating kinases during cytokinesis.


Assuntos
Proteínas Serina-Treonina Quinases , Tiazidas , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas/farmacologia , Fosforilação , Túbulos Renais Distais/metabolismo , Potássio/metabolismo
5.
Mol Cancer ; 12(1): 167, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24354805

RESUMO

BACKGROUND: The expression of annexin A6 (AnxA6) in AnxA6-deficient non-invasive tumor cells has been shown to terminate epidermal growth factor receptor (EGFR) activation and downstream signaling. However, as a scaffolding protein, AnxA6 may stabilize activated cell-surface receptors to promote cellular processes such as tumor cell motility and invasiveness. In this study, we investigated the contribution of AnxA6 in the activity of EGFR in invasive breast cancer cells and examined whether the expression status of AnxA6 influences the response of these cells to EGFR-targeted tyrosine kinase inhibitors (TKIs) and/or patient survival. RESULTS: We demonstrate that in invasive BT-549 breast cancer cells AnxA6 expression is required for sustained membrane localization of activated (phosho-Y1068) EGFR and consequently, persistent activation of MAP kinase ERK1/2 and phosphoinositide 3-kinase/Akt pathways. Depletion of AnxA6 in these cells was accompanied by rapid degradation of activated EGFR, attenuated downstream signaling and as expected enhanced anchorage-independent growth. Besides inhibition of cell motility and invasiveness, AnxA6-depleted cells were also more sensitive to the EGFR-targeted TKIs lapatinib and PD153035. We also provide evidence suggesting that reduced AnxA6 expression is associated with a better relapse-free survival but poorer distant metastasis-free and overall survival of basal-like breast cancer patients. CONCLUSIONS: Together this demonstrates that the rapid degradation of activated EGFR in AnxA6-depleted invasive tumor cells underlies their sensitivity to EGFR-targeted TKIs and reduced motility. These data also suggest that AnxA6 expression status may be useful for the prediction of the survival and likelihood of basal-like breast cancer patients to respond to EGFR-targeted therapies.


Assuntos
Anexina A6/genética , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Quinazolinas/farmacologia , Anexina A6/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Feminino , Expressão Gênica , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Lapatinib , Lisossomos/metabolismo , Recidiva Local de Neoplasia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteólise
6.
Oncotarget ; 6(33): 34228-44, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26447543

RESUMO

TGFß signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis.


Assuntos
Ativinas/metabolismo , Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Esofágicas/patologia , Adenocarcinoma/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ensaio de Imunoadsorção Enzimática , Neoplasias Esofágicas/metabolismo , Imunofluorescência , Humanos , Invasividade Neoplásica/patologia
7.
PLoS One ; 6(9): e24234, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915303

RESUMO

Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor progression. However, the precise mechanisms by which they are internalized and/or secreted remain poorly understood. In order to follow their release and uptake in breast tumor cells in real time, cell-derived exosomes were tagged with green fluorescent protein (GFP)-CD63 while human serum exosomes were rhodamine isothiocynate-labeled. We show that detachment of adherent cells from various substrata induces a rapid and substantial secretion of exosomes, which then concentrate on the cell surfaces and mediate adhesion to various extracellular matrix proteins. We also demonstrate that disruption of lipid rafts with methyl-beta-cyclodextrin (MßCD) inhibits the internalization of exosomes and that annexins are essential for the exosomal uptake mechanisms. Taken together, these data suggest that cellular detachment is accompanied by significant release of exosomes while cellular adhesion and spreading are enhanced by rapid uptake and disposition of exosomes on the cell surface.


Assuntos
Neoplasias da Mama/metabolismo , Adesão Celular/fisiologia , Exossomos/metabolismo , Anexinas/metabolismo , Transporte Biológico/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Citometria de Fluxo , Recuperação de Fluorescência Após Fotodegradação , Humanos , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA