Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(9): 4871-4881, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32350517

RESUMO

In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.


Assuntos
Atenção/fisiologia , Sinais (Psicologia) , Recompensa , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino , Estimulação Luminosa
2.
Cell Rep ; 40(12): 111392, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130494

RESUMO

Neuronal activity in visual area V4 is well known to be modulated by selective attention, and there are reports on V4 lesions leading to attentional deficits. However, it remains unclear whether V4 microstimulation can elicit attentional benefits. To test this hypothesis, we performed local microstimulation in area V4 and explored its spatial and time dynamics in two macaque monkeys performing a visual detection task. Microstimulation was delivered via chronically implanted multi-electrode arrays. We found that microstimulation increases average performance by 35% and reduces luminance detection thresholds by -30%. This benefit critically depends on the onset of microstimulation relative to the stimulus, consistent with known dynamics of endogenous attention. These results show that local microstimulation of V4 can improve behavior and highlight the critical role of V4 for attention.


Assuntos
Córtex Visual , Animais , Macaca mulatta , Neurônios , Estimulação Luminosa/métodos , Visão Ocular , Córtex Visual/fisiologia , Percepção Visual
3.
Cell Rep ; 37(10): 110086, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879273

RESUMO

When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.


Assuntos
Sincronização Cortical , Potenciais Evocados Visuais , Plasticidade Neuronal , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adaptação Fisiológica , Animais , Macaca mulatta , Masculino , Estimulação Luminosa , Fatores de Tempo
4.
Curr Biol ; 28(15): 2377-2387.e5, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30017481

RESUMO

Growing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is, however, not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields (RFs) elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RTs) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at theta frequencies. These findings show that theta rhythmic neuronal activity can arise from competitive RF interactions and that this rhythm may result in rhythmic RTs potentially subserving attentional sampling.


Assuntos
Atenção/fisiologia , Macaca mulatta/fisiologia , Tempo de Reação/fisiologia , Transmissão Sináptica/fisiologia , Ritmo Teta/fisiologia , Córtex Visual/fisiologia , Animais , Masculino , Neurônios/fisiologia , Estimulação Luminosa , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA