Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 108(12): 2435-2451, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636420

RESUMO

PREMISE: Reconstructing the light environment and architecture of the plant canopy from the fossil record requires the use of proxies, such as those derived from cell wall undulation, cell size, and carbon isotopes. All approaches assume that plant taxa will respond predictably to changes in light environments. However, most species-level studies looking at cell wall undulation only consider "sun" or "shade" leaves; therefore, we need a fully quantitative taxon-specific method. METHODS: We quantified the response of cell wall undulation, cell size, and carbon isotopes of Platanus occidentalis using two experimental setups: (1) two growth chambers at low and high light and (2) a series of outdoor growth experiments using green and black shade cloth at different densities. We then developed and applied a proxy for daily light integral (DLI) to fossil Platanites leaves from two early Paleocene floras from the San Juan Basin in New Mexico. RESULTS: All traits responded to light environment. Cell wall undulation was the most useful trait for reconstructing DLI in the geological record. Median reconstructed DLI from early Paleocene leaves was ~44 mol m-2 d-1 , with values from 28 to 54 mol m-2 d-1 . CONCLUSIONS: Cell wall undulation of P. occidentalis is a robust, quantifiable measurement of light environment that can be used to reconstruct the paleo-light environment from fossil leaves. The distribution of high DLI values from fossil leaves may provide information on canopy architecture; indicating that either (1) most of the canopy mass is within the upper portion of the crown or (2) leaves exposed to more sunlight are preferentially preserved.


Assuntos
Fotossíntese , Árvores , Isótopos de Carbono , Folhas de Planta , Luz Solar
2.
Am J Bot ; 99(7): 1197-206, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22753811

RESUMO

PREMISE OF THE STUDY: Leaf venation is linked to physiological performance, playing a critical role in ecosystem function. Despite the importance of leaf venation, associated bundle sheath extensions (BSEs) remain largely unstudied. Here, we quantify plasticity in the spacing of BSEs over irradiance and precipitation gradients. Because physiological function(s) of BSEs remain uncertain, we additionally explored a link between BSEs and water use efficiency (WUE). METHODS: We sampled leaves of heterobaric trees along intracrown irradiance gradients in natural environments and growth chambers and correlated BSE spacing to incident irradiance. Additionally, we sampled leaves along a precipitation gradient and correlated BSE spacing to precipitation and bulk δ(13)C, a proxy for intrinsic WUE. BSE spacing was quantified using a novel semiautomatic method on fresh leaf tissue. KEY RESULTS: With increased irradiance or decreased precipitation, Liquidambar styraciflua decreased BSE spacing, while Acer saccharum showed little variation in BSE spacing. Two additional species, Quercus robur and Platanus occidentalis, decreased BSE spacing with increased irradiance in growth chambers. BSE spacing correlated with bulk δ(13)C, a proxy for WUE in L. styraciflua, Q. robur, and P. occidentalis leaves but not in leaves of A. saccharum. CONCLUSIONS: We demonstrated that BSE spacing is plastic with respect to irradiance or precipitation and independent from veins, indicating BSE involvement in leaf adaptation to a microenvironment. Plasticity in BSE spacing was correlated with WUE only in some species, not supporting a function in water relations. We discuss a possible link between BSE plasticity and life history, particularly canopy position.


Assuntos
Acer/fisiologia , Adaptação Fisiológica , Liquidambar/fisiologia , Feixe Vascular de Plantas/fisiologia , Isótopos de Carbono/análise , Luz , Folhas de Planta/química , Chuva
3.
Ann Bot ; 94(4): 561-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15321836

RESUMO

BACKGROUND AND AIMS: The inverse relationship between the number of stomata and atmospheric CO2 levels observed in different plant species is increasingly used for reconstructions of past CO2 concentrations. To validate this relationship, the potential influence of other environmental conditions and ontogenetical development stage on stomatal densities must be investigated as well. Quantitative data on the changes in stomatal density of conifers in relation to leaf development is reported. METHODS: Stomatal frequency and epidermal cells of Tsuga heterophylla needles during different stages of budburst were measured using computerized image analysis systems on light microscope slides. KEY RESULTS: Stomata first appear in the apical region and subsequently spread basipetally towards the needle base during development. The number of stomatal rows on a needle does not change during ontogeny, but stomatal density decreases nonlinearly with increasing needle area, until about 50 % of the final needle area. The total number of stomata on the needle increases during the entire developmental period, indicating that stomatal and epidermal cell formation continues until the needle has matured completely. CONCLUSIONS: Epidermal characteristics in developing conifer needles appear to be fundamentally different from angiosperm dicot leaves, where in general leaf expansion in the final stages is due to cell expansion rather than cell formation. The lack of further change in either stomatal density or stomatal density per millimetre needle length (the stomatal characteristic most sensitive to CO2 in conifers) in the final stages of leaf growth indicates that in conifers the stage of leaf maturation would not influence CO2 reconstructions based on stomatal density.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Tsuga/crescimento & desenvolvimento , Diferenciação Celular , Folhas de Planta/citologia
4.
Am J Bot ; 90(4): 610-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21659156

RESUMO

The species-specific inverse relation between atmospheric CO(2) concentration and stomatal frequency for many woody angiosperm species is being used increasingly with fossil leaves to reconstruct past atmospheric CO(2) levels. To extend our limited knowledge of the responsiveness of conifer needles to CO(2) fluctuations, the stomatal frequency response of four native North American conifer species (Tsuga heterophylla, Picea glauca, Picea mariana, and Larix laricina) to a range of historical CO(2) mixing ratios (290 to 370 ppmV) was analyzed. Because of the specific mode of leaf development and the subsequent stomatal patterning in conifer needles, the stomatal index of these species was not affected by CO(2). In contrast, a new measure of stomatal frequency, based on the number of stomata per millimeter of needle length, decreased significantly with increasing CO(2). For Tsuga heterophylla, the stomatal frequency response to CO(2) changes in the last century is validated through assessment of the influence of other biological and environmental variables. Because of their sensitive response to CO(2), combined with a high preservation capacity, fossil needles of Tsuga heterophylla, Picea glauca, P. mariana, and Larix laricina have great potential for detecting and quantifying past atmospheric CO(2) fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA