Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(9): 095001, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655260

RESUMO

A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

2.
Rev Sci Instrum ; 79(5): 053504, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18513066

RESUMO

High voltage, high current, and high Coulomb transfer closing switches are required for many high power pulsed systems. There are a few alternatives for closing switches, for example, ignitrons, vacuum switches, solid-state switches, high pressure gas switches (spark gaps), and some others. The most popular closing switches up to date are spark gaps due to relatively simple design, robustness, easily field maintenance, and repair. Main drawback of spark gaps is limited lifetime, which is related directly or indirectly to erosion of the electrodes. Multichannel switches and switches with moving arc have been proposed to prevent the electrodes erosion. This study investigates switches, where a spark channel is initiated in a three-electrode layout and then the spark accelerates due to electrodynamic force and moves along the extended electrodes. At a given current amplitude, the diameter of the extended electrodes allows to control the spark velocity and hence, the erosion of the electrodes providing the required lifetime. The first switch is designed for 24 kV charging voltage and approximately 4 C total charge transfer. This spark gap was tested at 25 kA peak current in 40 000 shots in a single polarity discharge and in 20 000 shots in bipolar discharge. Second spark gap is designed for 24 kV charging voltage and approximately 70 C total charge transfer. It was tested in 22 000 shots, at a current of 250 kA with a pulse length of 360 mus. In this paper, we present design of these spark gaps and trigger generator, describe the test bed, and present the results of the tests.

3.
Rev Sci Instrum ; 78(3): 033501, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17411179

RESUMO

The GIT-32 current generator was developed for experiments with current carrying pulsed plasma. The main parts of the generator are capacitor bank, multichannel multigap spark switches, low inductive current driving lines, and central load part. The generator consists of four identical sections, connected in parallel to one load. The capacitor bank is assembled from 32 IEK-100-0.17 (0.17 microF, 40 nH, 100 kV) capacitors, connected in parallel. It stores approximately 18 kJ at 80 kV charging voltage. Each two capacitors are commuted to a load by a multigap spark switch with eight parallel channels. Switches operate in ambient air at atmospheric pressure. The GIT-32 generator was tested with 10, 15, and 20 nH inductive loads. At 10 nH load and 80 kV of charging voltage it provides 1 MA of current amplitude and 490 ns rise time with 0.8 Omega damping resistors in discharge circuit of each capacitor and 1.34 MA530 ns without resistors. The net generator inductance without a load was optimized to be as low as 12 nH, which results in extremely low self-impedance of the generator ( approximately 0.05 Omega). It ensures effective energy coupling with low impedance loads like Z pinch. The generator operates reliably without any adjustments in 40-80 kV range of charging voltage. Maximum jitter (relative to a triggering pulse) at 40 kV charging voltage is about 7 ns and lower at higher charging voltages. Operation and handling are very simple, because no oil and no purified gases are required for the generator. The GIT-32 generator has dimensions of 3200 x 3200 x 400 mm(3) and total weight of about 2500 kg, thus manifesting itself as a simple, robust, and cost effective apparatus.

4.
Rev Sci Instrum ; 87(6): 063505, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370452

RESUMO

Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 µF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 µF) capacitors are connected in parallel. The generator inductance is 2 µH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 µH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 µs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

5.
Rev Sci Instrum ; 86(12): 123504, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724024

RESUMO

High-energy switches and trigger generators are required for MJ-level capacitor banks. We have developed a compact gas switch and a matched series injection trigger generator. A series inductance is required for isolation of the trigger pulse from the surrounded circuit. A saturable inductor is employed here because low inductance is needed after the switch breakdown. The switch is of coaxial two-electrode design with electrodynamic acceleration of a spark channel. The switch operates at atmospheric pressure. The spark gap can be triggered reliably down to zero voltage (at 50 kV self-breakdown voltage) with less than 35 ns timing jitter. Energy losses in this spark gap have been accurately investigated. The main results are as follows: energy losses in the switch do not exceed 4% at voltages higher than 15 kV, i.e., when operation voltage exceeds ∼36% of the self-breakdown voltage. The spark gap is designed for 24 kV charging voltage, at a current up to 250 kA, and ∼70 C charge transfer. In this paper, we present a design for the spark gap, inductor and trigger generator. Test bed schematics and results of the tests are also described.

6.
Rev Sci Instrum ; 85(1): 013501, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517759

RESUMO

In the Linear Transformer Driver (LTD) technology, the low inductance energy storage components and switches are directly incorporated into the individual cavities (named stages) to generate a fast output voltage pulse, which is added along a vacuum coaxial line like in an inductive voltage adder. LTD stages with air insulation were recently developed, where air is used both as insulation in a primary side of the stages and as working gas in the LTD spark gap switches. A custom designed unit, referred to as a capacitor block, was developed for use as a main structural element of the transformer stages. The capacitor block incorporates two capacitors GA 35426 (40 nF, 100 kV) and multichannel multigap gas switch. Several modifications of the capacitor blocks were developed and tested on the life time and self breakdown probability. Blocks were tested both as separate units and in an assembly of capacitive module, consisting of five capacitor blocks. This paper presents detailed design of capacitor blocks, description of operation regimes, numerical simulation of electric field in the switches, and test results.

7.
Rev Sci Instrum ; 85(10): 104703, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362430

RESUMO

Here, we describe a source of high-power ultrawideband radiation with elliptical polarization. The source consisting of a monopolar pulse generator, a bipolar pulse former, and a helical antenna placed into a radioparent container may be used in tests for electromagnetic compatibility. In the source, the helical antenna with the number of turns N = 4 is excited with a high-voltage bipolar pulse. Preliminary, we examined helical antennas at a low-voltage source aiming to select an optimal N and to estimate a radiation center position and boundary of a far-field zone. Finally, characteristics of the source in the operating mode at a pulse repetition rate of 100 Hz are presented in the paper as well. Energy efficiency of the antenna is 0.75 at the axial ratio equal to 1.3. The effective potential of radiation of the source at the voltage amplitudes of the bipolar pulse generator equal to -175/+200 kV reaches 280 kV.

8.
Rev Sci Instrum ; 83(10): 104705, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126788

RESUMO

The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

9.
Rev Sci Instrum ; 82(10): 104702, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047312

RESUMO

Method of voltage measurement at a vacuum load by means of homogeneous short-circuited vacuum-isolated line was considered. Prior to appearance of a measured high-voltage pulse, a magnetic field is formed in the line due to the bias current. Biasing provides fulfillment of magnetic electron isolation conditions and strong pressing of an electron layer down to the cathode already at the voltage wave front. As a result, a weak change of the "hot" line wave impedance is achieved during a pulse. Theoretical consideration and numerical simulation of the measuring line operation in the presence of bias current basing the applicability of the method was carried out. The method was used to determine the plasma-filled diode voltage at a megavolt voltage level. The absence of electron leakages at the voltage wave propagation of the amplitude ≈1 MV along the measuring line of the length 2.3 m with the wave impedance of 136 Ω and initial bias current of ≈6 kA was realized.

10.
Rev Sci Instrum ; 81(10): 103506, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034090

RESUMO

A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 µF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

11.
Rev Sci Instrum ; 80(8): 083504, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19725652

RESUMO

Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 ohms damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (approximately 0.08 ohms). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24x1.2x0.18 m(3) and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA